6433 PROGRAMMABLE SIGNAL

PROCESSOR

USERS GUIDE

Date : Febh, 84

Issue: F Part No: HA 075417 U003
JSH '
E Turnbull Control Systems Limited - Telephone Worthing (0903)205277
Broadwater Trading Estate Worthing Sussex BN14 8NW Telex 87437

&

Maintenance Manual Addendum Sheet 5433

6433 USER GUIDE ADDENDUM SHEET

Software issue 1/1E

Remove FS and SETFS operators; forward space in Line Edit mode is
now achieved by rewriting characters.

Block framing characters STX and ETB added to Save utility,

Software issue 1/1F

XON-XOFF added to Save utility.
Change to ULIST, method of paging.

Software issue 2; release 1

The user program memory has been expanded to 8K. This memory is
situated on the ROM/RAM emulator daughter card (assembly AC 075114).
This card is fitted with one 8K EEPROM chip and one 8K RAM chip. ©No
difference should be seen by the programmer, except that the FORTH
prompt will show an additional 4096 bytes of free memory.

Issue 3 Maintenace Manual!ssue._,_E,___

About this Manual

This manual describes the programmable characteristics of the 6433
signal processor.

The text assumes that the reader has a good working knowledge of the
6432 signal processor, upon which the 6433 is based. Readers
without this knowledge are strongly advised to refer to the 6432
technical manual before attempting to proceed with the 6433.

The 6433 is programmed in a version of the "FORTH"* language,
developed by TCS specifically for use with the 6433, TCS FORTH
differs from other standard FORTH implementations in that:

a) it 1is considerably simpler, not requiring any of the features
found in other implementations (e.g. it uses no disk file I/0)

b) it handles numeric data exclusively in floating point format,
thus removing the need for the programmer to consider binary
point positioning.

The manual describes the TCS FORTH implementation, and provides
examples relating to the use of the language. An appendix shows a
documented application program for a typical process control
problem.

Readers who already have programming experience (not necessarily in
FORTH) should find the manual self-sufficient. Readers who have no
" previous software knowledge will probably find it necessary to refer
to a standard introductory text on FORTH, which will provide an
introduction to programming and the concepts of FORTH as a language.
Readers who refer to a standard FORTH textbook are advised to use
the standard text only to obtain a basic understanding of the
concepts prior to proceeding to this manual.

The manual includes a section in the appendices entitled "First
steps in using -a 6433", which is a step by step description of
setting-~up, powering-up and preparing to program a 6433. This
section 1is intended to be used once readers have a general
understanding of the 6433 programming language, and are ready to
commence practical exercises. :

Related Literature

a) 6432 Technical Manual:
Readers will find 1t necessary to have this manual available

for ready reference,
b) System 6000 Communications Handbook:

This handbook is required only if the user intends to
communicate with the 6433 via the RS422 serial port.

c) 6433 Programming Terminal Users Guide:
This manual is vrequired only when using the TCS intelligent

programming terminal.

d) Introductory Text Books on FORTH:
'Starting Forth' by Leo Brodie - Prentice Hall

* FORTH is a registered trademark of FORTH INC.

-(i)-

SECTION

1

)

®
*

NN NN

L

el e
.

U B W N

3N]
B

“

B M2 NN N
L
BN N RO
@

3

®
L N

.

o

B

BRI DR BRI B RN LW
®
.

°
.

. »
- e »
O3 ~J N Ut b) D) ped

L]
Ll W W W W

s

BRI B DN B R NS B N e
L= R A S A T

o
»

OO 00~ T U D DN

[
*

*
-

°
.

. -
- ® .

.
(3

Gen

CONTENTS

eral Description.

The

Introduction.
Functional Overview.

Programming Considerations.

Instrument Configuration and Terminal

Operation.

Instrument setup.
Parameter setup.

Terminal Configuration.
Terminal Operating Modes.,
Processing and its

Signal Language

Ope

ration.

6433 Software Structure.
Executive.

Task 1 - Communications.
Task 2 - Input/Output.

Task 3 - Svstem Maintenance,
Interpreter.

Signal Processing Language Structure.
L.anguage Tvype.

Language Notation,

Parameter Stack.

Statement FEntry.

Operands.

Global Variables.

L.ocal Variables.

mTimers.

Real Input/Output Operands.

Pseudo Input/Output Operands.
Display of Derived Values.

Operator Setpoints.

Access to Configuration Parameters.

Operators.

Arithmetic Operators.

Boolean or Logical Operators.
Comparison Operators.

Signal Input/Output Operators.
Global Variable Operators,
T.ccal Variable Operators.
Timer Operators.,

Stack Manipulation Operators.
Terminal Tnput/Output Operators.
Display Control.

..
GO W e fot pnd o

NN N NN
*

.

NN N O
-
U U7 B B b

o = ®

BN NN RN NN N
COWWIIdJIRNA RN

e

SN DN NN
L]

o)
e 0 < &
NI D et pdt bt bd bt et ek D O
W b= O 0O~k e)0

N DD 1D o
N «

o

~-(ii)~

~

)

SECTION

2

.

NN D
.

W N =

vt n

3]
»

.
°

Oy Ut s W N =

T
[o)Je) e)Mo) Wie s We)
« o »

NNDNDNDNDNDD

N
~J

N
N
o0

Program Control Statements.
nO LOOPS.

Continuous Loops.
Conditional Branches.

Interpreter Facilities,
Operating Modes.

System Utilities.
Programming Terminal Utilities.
Program Creation.
Line Editor.
Frror Reporting.

L.anguage Examples.

Memory Requirements.

-(iii)-

FIGURE

LIST OF ILLUSTRATIONS

TITLE

6433 Functional Overview.

MAIN : Simple Task Scheduler.

Arithmetic Computation and Signal Input/Output.

Comparison operator and conditional branch
IF...ELSE...ENDIF Structure,

Local Variables : ARG...RES Structure.

Stack Manipulation Operators.

DO...I.LOOP Structure.

Conditional Branch : CASE...ENDCASE Structure.,

Block Diagram of Lead/lL.ag Combustion Control.

2.42
2.43

2.44

2.45

_(iv)—

TITLE

Fxample of
operation.

the

LIST OF TABLES

channel scanning algorithm in

PAGE

2.2

APPENDICES

APPENDIX TITLE
A 6433 Parameter Tables.
a.l Table of Instrument Command Parameters (ASCII).
A.2 Table of Channel Command Parameters (ASCII).
A.3 Tables of Parameter Numbers (Binary).
B USA Standard Code for Information Exchange -
ASCITI.
B.1 ASCII Control Codes.
B.2 ASCII Character Codes.
C Application Program, documentation example.
c.1 Combustion Control with Cross-Limiting (Lead/Lag).
D First Steps in using a 6433,
F 6433 Programmers Reference List.

1}

G

6433 Set-up Data Sheet Example.

6433 Set-up Data Sheet.

-(vi)~

Section 1 GENERAL DESCRIPTION

1.1 Introduction

The 6433 Programmable Signal Processor is based on the hardware
of the 32 channel 6432 Signal Processor. The latter is
primarily intended for analogue and digital data acquisition and
display but includes the ability to set alarms on selected input
and link these to specified digital outputs.

The 6433 features a software enhancement which allows both
arithmetic and boolean computation by means of a stack-oriented
interpretive programming language based on a subset of FORTH.
This includes various enhancements to provide floating point
arithmetic and 16 internal timers. The language is highly
compact, and statements are entered in a "Reverse-Polish" mode.

The unit is intended for arithmetic computation, special control
functions, logical manipulation and simple ramp generation and
sequencing applications. Timing functions are carried out to a
precision of 2 milliseconds under control of a real time clock.

Input/output capability 1is the same as for the 6432 (i.e. 4
blocks of 8 channels where blocks may be analogue or digital
inputs or outputs) but in addition there are 4 blocks of 8
pseudo channels which may be used for internal derived values.
These are accessible from the front panel and via the handheld
programming terminal socket or serial link in the same way as
the real -input/output channels, and would typicallv be used to
display the results of calculations, status, and to set internal
constants.

User memory is 4K RAM and 4K EEPROM. Programs are developed in
RAM by using an RS232 "Teletype” compatible device such as a VDU
plugged into the front panel programming socket. A program
developed in RAM can be "fixed"” into ROM from the programming
device. The program is, however, always run from RAM and this
allows programs to be loaded into RAM, edited and then debugged
before the original program is replaced.

lql

Bd4dzs

HIGH LEVEL
LANGUAGE
INTERPRETER

T
PROGRAMMING
TERMINAL
9 4
STACK FIXED WORDS
DICTIONARY
{KERNEL
INSTRUCTIONS)
" PSEUDO INPUT/OUTPUT H |
ANALOGUE MONITORING | | AN. INPUT ¥ |
8) 3
i [BLOCK & I I e I ————
OPERATOR SETPOINTS I AN BUTPUT® : r u]
@ ; ; { | USER WORDS |
I IBLOCK 7 ' {] DICTIONARY i
smrus(;;owmmwe | bie. TNPUT * : | (APPLICATIONS - !
i i 1 | PROGRAM) i
1
OPERATOR CONTROL I ECCUE M ESILLL RN
(8) " DIG. QUTRUT : ;]
(i !
N i i
| DATA BASE ! ; :
A g i 1 i
]
! ! | 4% EEPROM i
g VARIABLES ¢ L]
: ! (84} : PROGRAM MEMORY
{
! [Tiweas : (RAM/EEPROM)
i (18) i
' i
R -
PARAMETER MEMORY
(BATTERY BACKED RAM)
SOFT WARE FMYANCEMENTS WITHIN 6433
#MOTE: ANALOGUE AND O!GITAL INPUT/OUTPUT CARDS
ARE SHOWM [N A TYPICAL CONFIGURATION;
ANY COMBINATION MAY BE SPECIFIED. §4633 PROGRAMMABLE SIGNAL PROCESSOR
FUNCTIONAL OVERVIEW
o FIGURE 1.1
-1.2-

TS

1.2 Functional Overview

The heart of the 6433 is the database as shown in the functional
overview of Fig 1l.1. This holds the instrument parameters and
channel parameters for the 4 blocks of 8 real input/output
channels as for the 6432. In addition it holds the parameters
for the 4 blocks of 8 internal or pseudo channels.

This database is scanned continuously and updated with the
values of real inputs or computed values; output blocks are
updated with new wvalues 1f a change has taken place to the
relevant values 1in the database. All values are available for
display on the front panel under the control of the pushbuttons.

As in the 6432 instrument values may also be accessed via the
data communications task. In normal on-line operation this
services the RS422 serial 1link. However plugging 1in a
programming terminal disables the RS422 1link and transfers
control to the RS232 front panel socket which may be used for
either the handheld terminal or a teletype compatible console
such as a VDU.

Also held in the database are current values of the 64 variables
and 16 timers. Variables are stored in 32 bit floating point
format. Timer values are stored as 32 bit numbers with 1 bit
corresponding to 2 milliseconds, giving a range of +4,294,960
sec or about 7 weeks. .

User programs are written in a high level interpretive language
based on a version of FORTH. Program statements are called
"Words" and these loosely correspond to subroutines. A kernel
set of the most common functions are resident in ROM in the
"Fixed Word Dictionary".

These comprise the common arithmetic and boolean operators,
input output routines etc. The user then builds up a program by
creating a hierarchy of user words in which both user-created
and fixed dictionary words may be nested and strung together.
The user words are added to the "User Word Dictionary".

Program words operate on cne or more values on a data "stack"”.
New values are put onto the top of the stack and push down old
values. They are picked off on a first-in last-out basis so
that program statements operate in a "Reverse Polish" format.

The front panel RS232 socket supports two terminal modes. The
first 1is Command Mode which provides the normal access to
configuration parameters via 2 character mnemonics. The second
is Programming Mode which provides access to the FORTH editor
for entering and modifying programs. This mode 1is protected by
a security number associated with a user name.

-1.3~-

ol g Joen]

1.3

Programming Considerations

A stack-oriented language imposes a structured . approach to

applications programming. Program statements or "Words" can
only call other routines that have already been defined and are
recognised by the interpreter. This implies "top down"

formulation of the problem with "bottom up" implementation of
the program.

The first step is to define the database. This will comprise
real inputs and outputs according to the hardware configuration,
and then internal or "pseudo" inputs and outputs for derived
values and constants requiring access from the front panel. It
should be noted that derived values for display should be set up
as pseudo inputs because this allows the facility of setting
high and low alarms as for real inputs. Conversely operator-set
constants should be set as outputs so as to allow use of the
raise/lower buttons or handheld terminal for changing values.

Intermediate results used in more than one place in the program
but not required for display are conveniently set as variables.
This has the advantage of reducing dependence on the stack and
can allow individual program statements to be more self
contained.

The next step is to draw a flow chart for each independent task.
All tasks residing in the instrument must then be incorporated

in a master loop which performs scheduling; usually it is
sufficient to cycle sequentially through - all the tasks and
enclose them in a BEGIN...END structure. Two preliminary tasks

are also generally required to set up initial values of
constants and to reset timers, counters and flags etc.

The third step is to divide the flow chart into sub-routines of
a suitable size to be defined as program words. It may be
desirable for clarity to restrict word length to one line on the
terminal device, to a length set by the WINDOW operator. Longer
statements can be achieved by stringing together several words.
Words should as far as possible be self contained.

The <final step 1is to translate the flow chart into code and
enter the program, noting that words lowest in the hierarchy
must be entered first.

For simple analogue computations a block diagram approach 1is
often more appropriate than a flow chart. An example is shown
in the Appendix.

Individual parts of the program may be tested at any stage by
executing in immediate mode, simply by typing in the appropriate
Word name.

et

-1.4-

1.4 Instrument Confiquration and Terminal Operation

1.4.1 Instrument Set-up

The 6433 1internal switches are set up in the same way as
for the 6432. Note, however, that an extra switch S1 no. 1
determines whether the baud rate of the front panel RS232
socket 1is 300 baud, as for the handheld terminal, or as
gselected on S1 no(s}. 2 to 4. A VDU or a teletype which
has a data buffer, may use 9600 baud.

1.4.2 Parameter Set-up

Instrument parameters for the 4 real input/output blocks
should be set up as for the 6432, A further set of 4
blocks may be defined for internal pseudo channels.

1.4.3 Terminal Configuration

A special lead is required to plug a VDU or teletype into
the front panel socket. Connections for the latter, with
designation referring to the terminal are as follows:

6433 Designation HHT 25 way RS232 Designation
Socket Connector

0V(Signal Ground) H 7 Signal Ground
Hand Held Terminal Sense E(link to 0V)

Transmit {(from Terminal) B 2 Trans. Data
(from Terminal)

Receive (to Terminal) F 3 Rec. Data
(to Terminalj)

It is necessary to ensure that the terminal data format is
set up correctly, viz:

Start bit

Data bits

Parity bit (even) .
Stop bit (2 at 110 Baud)

bt bt w e

Use of the Line Editor in Programming Mode requires that a
suitable character (normally TAB) is defined for Forward
Space,

mhess -P e

5433

l.4.4 Terminal Operating Modes

At power up the instrument executes the word MAIN 1f this

is resident in the user memory. A terminal plugged into
the front panel allows access to parameters as for the
6432,

It is convenient t0O use a VDU to emulate a Hand Held
Terminal when configuring the 6433 as described in section
2.6.1.

Programming Mode may be entered by keying CTRL P. Access
is only granted on acceptance of the valid 3 digit
security code outlined in section 2.6.1. :

Entries from the programming device are terminated u51ng
the RETURN key in the usual way.

The ~contents of the Fixed and User Word Dictionaries may
be examined using the FWORDS and UWORDS commands
respectively. Available memory is printed when entering
programming mode. Handheld terminal mode 1is restored by
typing CTRL Q. Detailed facilities are described in
section 2.6.

A useful diagnostic feature is the ability to examine the
top stack entry. This is done by entering a full stop
which causes the top of the stack to be printed on the

terminal. Note that the top of stack value is lost; if
this is undesirable then the DUP command may proceed the
full stop.

This feature is commonly used when testing program
statements in immediate mode.

-1.6~-
Py

Section 2 THE SIGNAL PROCESSING LANGUAGE AND ITS OPERATION

2.1 6433 Software Structure

The basic software structure of the 6433 Programmable Signal
Processor is illustrated by the functional overview cof Fig. 1.1
where it can be seen to consist of the following main

components: -
2.1.1 Executive

The kernel of the 6433 software is a real-time,
multi-tasking executive which schedules the 3 system
"tasks” on an interrupt driven basis derived from a 2ms
real-time clock. As well as controlling this task
scheduling scheme the executive 1is also responsible for
multiplexing the front-panel displays.

2.1.2 Task 1 - Communications

The highest priority task in the system is the scheduling
of the communications routines. The receive character
handling routine is scheduled whenever the UART generates
an interrupt after receiving a character via the Hand-Held
Terminal oxr RS422 data 1link. The transmit character
handling routine is scheduled when data has to be sent to
the 8260 Hand-Held terminal or RS422 data link and the
UART generates an interrupt after each character has been
transmitted.

2.1.3 Task 2 - Input/Output

The second highest priority task is scheduled whenever the
analogue or digital inputs are to be scanned, or whenever
the analogue or digital outputs are to be updated. With
analogue inputs, for example, the A to D conversiocn, Prime
Variable ranging, filtering and linearisation are all done
within the scheduled Task 2 operation. The 8 analogue or
digital channels within each I/0 block are controlled by a
channel scanning algorithm which works on a basic scan
period of 38ms. The rate at which input/output channels
are scanned depends upon the types o©f I/0 Blocks fitted,
and the number of enabled channels within each Block.
During each 38ms scan period, the following occurs on each
of the 4 different types of Blocks-:

a) 1 <c¢hannel 1is scanned on each analogue 1nput or ocutput
Block.

b) Up to 8 channels are scanned on each digital input or
output Block.

24T et

CHANNELS SCANNED

38ms SCANNING PERIOD

Time in ms

2

—

WITHIN I/0 BLOCK 0 38 76 114 152 190 228 266
to to to to to to to to
37 75 113 151 189 227 265 303
1 (4 enabled) 1 2 3 4 1l 2 3 4
2 (3 enabled) 1 2 3 1 2 3 1 2
3 (1 enabled 1 1 1 1 1 1 1 1
4 (8 enabled 1-8 1-8 i-8 1-8 1-8 1-8 1-8 1-8

algorithm in operation

TABLE 2.1 Example of the channel scanning

-2.2-

B4z

2.1.3 Task 2 - Input/Output /Cont.

This - is illustrated by the example given in Table 2.1
where a 6433 is configured as follows:-

(i) - Block 1 - analogue input or output with 4
channels enabled.

(ii) Block 2 - analogue input or output with 3
channels enabled.

(iii) Block 3 - analogue input or output with 1
channel enabled.

(iv) Block 4 - digital input or output with 8 channels
enabled.

The order in which the channels are scanned in each Block
is shown in Table 2.1 where the following points are

brought out:-

a) an analogue I/O Block with 4 channels enabled has each
channel scanned every 4 x 38 = 1l5Zms.

b) An analogue I/0 Block with 1 channel only enabled is
scanned every 38ms.

c) A digital I/O Block is scanned every 38ms regardless of
the number of channels enabled.

2.1.4 Task 3 - System Maintenance

The lowest priority task is the system maintenance routine
which accesses the instrument data base directly using the
values obtained by Task 2 and provides the Executive with
the current front-panel display data. The maintenance
task also scans the front-panel push-buttons to detect
operator changes and carries out various other
"housekeeping" functions.

2.1.5 Interpreter

Fig 1.1 shows that the interpreter is only activated when
all other 3 tasks have been executed and de-scheduled and
it can thus be considered as a sort of "background”
activity. The function of the interpreter itself is to
execute the user defined program sequence, accessing input
variables from the instrument data base, processing them
as regquired, and updating the output variables with the
results, Input/Output task 2 then continues to access
current data from "real world" inputs just as in a 6432,
and results of program calculations are available as "real
world" cutputs in a similar manner.

T2 “P e

2.2 Signal Processing Language Structure

The main features of the Signal Processing Language Structure
are as follows:-

2.2.1

Language Type

The Language 1is based on a subset of FORTH, with certain
enhancements to allow floating point arithmetic, timing
etc. It 1is interpretive in nature, which means that as
each statement is entered it is scanned by the interpreter
for syntax errors. An error-free statement will then be
compiled before the next statement is entered. This
differs from many interpreter-based languages such as
Basic, where the statement is recompiled each time it is
executed.

Language Notation

Mathematical expressions are entered 1in Reverse Polish
Notation (RPN), rather than in Algebraic format. This
gives a number of advantages, viz:-

a) The number of statements required to evaluate a given
expression are usually reduced.

b) The need for parenthesis is eliminated.

c) The wuser is forced to follow the rules of a structured
programming language. This improves readability and
reliability.

The features of RPN can best be illustrated by means of
the following example"-

"Evaluate the expression : A * (B + C)"

This would be done in algebraic format, by working through
the expression as it 1is written from left to right as
users of most types of pocket calculator are aware. In
Reverse Polish Notation, the expression would be written
and evaluated in reverse order, thus:-

C B+ A *

This means that the values of C and B are entered first.
The + operator always adds the last two numbers entered
and leaves a single number result. The value of A is
entered next and the * operator multiplies the last two
values together, i.e. A2 and B + C.

ot

-2 ,4-

2‘2.3

Parameter Stack

In order that the RPN structure of Section 2.2.2 can
operate, it 1s necessary to introduce the concept of a
Parameter Stack. This 1is just an array of memory
locations, or registers into which the values of
parameters are stored and fetched as the interpreter works
through an expression. The stack is of the "Push-down" or
"Jast-in, first-out" type, so that operands are always
loaded onto the top causing all the existing parameters to
be "pushed-down" one location. Conversely, when a
parameter is "pulled-off" the top of the stack, all the
others move up one location. The example above may now be
split up into individual stack operations, thus:-

a) C - causes the value of C to be loaded onto the top of
the stack.
b) B - causes C to be pushed down one place and the value

of B placed on the top of the stack.

c) + - ~causes the top two stack entries to be added
together and the result placed on top of the stack.

d) A - loads the value of A on top of the stack and pushes
down the previous entry, i.e. (C + B).

e) * - causes the top two stack entries to be multiplied
together and the result placed on top of the stack,
i.e. A* (B + C).

Data is stored in the Parameter stack in the form of two
consecutive 16 bit words. These 32 bit data words are
used to store numbers in floating point format with an 8
bit exponent and a 23 bit mantissa and a hidden bit. This
allows numbers to be held to 9 digit accuracy 1in the range
10 to the power +38. However, it should be noted that
numbers can only be displayed to 6 digit accuracy.

Statement Entry

Each program statement is a simple one line entry made via
the Programming Terminal which 1is normally a VDU.

Programming mode 1is entered by keying CTRL P followed by
the security code. The desired line length may then be set
up using the WINDOW statement. Handheld terminal mode 1is
restored by keying CTRL Q. A VDU may be used to emulate
the handheld terminal 1if desired. Using a teletype
instead of the VDU allows printout of a program listing.

-2 .5~

2.3 Operands

The parts of a program statement that actually contain the data
to be processed or operated on are known as Operands. In
contrast to standard FORTH which generally uses integer
arithmetic, all 6433 operands are stored as signed 32 bit
floating point format. This includes Boolean data and flags,
and the interpreter optimises the arithmetic according to data
type so that the overload of non-integer operations is only
incurred where necessary. The 6433 interpreter supports several
different types of operands which are described in the following

. sections.

2.3.1 Global variables

Very often, it is required to save the intermediate result
of a calculation for later use, but not to take up storage
space on the stack. This is achieved by accessing one of
64 dummy operands or general purpose memory registers
referred to as variables 1 to 64. Each of these memories
is a full 32 bit register and stores data in floating
point format. The data in any of the memories can only be
accessed from within a program and cannot be displayed on
the 6433 front-panel, the 8260 terminal, or via the RS422

data link.

2.3.2 Local Variables

Routines requiring repeated access to derived values can
result in either wasteful use of Variables or intricate
manipulation of the stack which may be difficult to follow
in a line of FORTH code without a stack progress diagram.

This problem is alleviated by allowing the allocation of
up to 8 stack values to be used as Arguments within a word
definition, At the same time an 8 position results area
1s reserved at the top of the stack. These results can
similarly be used as local variables within the routine.
On leaving an Argument-Result structure a number of
entries <from the Results area can be left at the top of
the stack so as to be passed on to the next routine. All
other Arguments and Results are dropped, together with any
residual stack entries above the Results area. These
Arguments may be accessed locally within the word in the
same way as global variables. .

Argument definitions may be nested, but only these local
to the current definition may be accessed.

This wuse of 1local variables for Arguments and Results
makes the writing and readability of re-entrant code

significantly easier.

-2 .6~

B4z

2.3.3 Timers

When the 6433 is being used in sequencing operations, it
is usually necessary to be able to time the interval
between the occurrence of 2 events. For this purpose, the
interpreter allows the user to access up to 16 timers, T1
to Tl6, within a program. Timers are clocked every 2ms and
the count is stored in a 32 bit register., This meanf that
the maximum count (positive or negative) is /500
=4,294,960 sec or about 7 wegks. The resolution is the
greater of 2ms and 1 part in 2° "depending on the magnitude
of the current value. Timers may be loaded with either
positive or negative values. Once a timer is set up or
loaded it 1is automatically decremented every 2ms. The
value 1in seconds in floating point or exponent format of
any of the 16 timers may be accessed by the program and
tested to see how much time has elapsed.

2.3.4 Real Input/Output Operands

When the value of one of the 32 input/output channels is
to be processed it may be used as the operand of a program
statement and accessed simply by block and channel number.

Just as for the 6432 instrument all 32 input/output
channels can be displayed on the front-panel, on the
programming terminal, or accessed via the RS422 serial

link.

2.3.5 Pseudo Input/oﬁtput Operands

In addition to the 4 blocks of real inputs and outputs
there are a further 4 blocks of internal data which may be
nominally identified as analogue or digital inputs/
outputs. These are referred to as "pseudo channels™ and
are intended to be used to allow display of derived values
and setting of calculation constants and status bits. The
32 pseudo channels can be accessed via the front panel,
the programming terminal or via the RS422 serial link in
the same way as real input/output.

Related parameters such as alarms on 1inputs and high and
low 1limits on outputs are effective as for real
input/output channels. Note that filtering and
linearisation are not effective on analogue inputs.

-2.,7=

2.3.6

2.3.8

Display of Derived Values

Derived values from computations may be displayed by
defining them as either pseudo inputs or outputs. However,
subject to available channel capacity, they are most
conveniently set as pseudo-inputs to allow use of the
alarm feature as for real inputs.

It is helpful to consider signal direction 1in the sense
that derived values form inputs to the 6433 display.
Note that writing from within the program to a real input
is prohibited by the interpreter and will result in a
Run-time error. :

Operator Setpoints

Constants or status bits requiring to be set at the front

panel should be set as pseudo outputs. In the case of
analogue values these will be subject to the high and low
output limits. If necessary changes to these from the

front panel may be prohibited using the Pushbutton Disable
facility in the ST status word. '

Access to Configuration Parameters

As well as having access to real and pseudo inputs and
outputs the program may read and manipulate any of the
Configuration Parameters which are normally available on
the serial 1link. These are accessed by - block and
parameter numbers according to the tables shown in
Appendix A3.

-2.8-

2.4 Operators

The parts of a program statement that defines what action is
going to be taken on an operand is known as an operator. The
6433 interpreter supports several different types of operators
which are described in the following sections.

Stack action is indicated as a list of values before and after
execution of the word, in the form:

Stack contents before Stack contents after

In all references to the stack, numbers to the right are at the
top of the stack. Position in the stack is indicated by a
numerical suffix showing the order of data entry; for example
the notation nl n2 is read as "nl is beneath n2", where n is a
32 bit signed number. Although all stack values are stored as
32 bit signed numbers other data types are distinguished as

follows:-

Bn Input/Output Block number

Cn Input/Output Channel number

Pn Parameter number

Vn Variable number

An Argument number

Rn Result number

Tn Timer number

£ Boolean flag : 0O=false, non-zero=true
c 7 bit ASCII character

Section 2.7 gives examples of the use of a selection of
operators.

2.4.1 Arithmetic Operators

The interpreter allows a number of arithmetic operators to
be used on the parameter stack. These operators work on
the top one or two entries of the stack and hence perform
Full 32 bit Ffloating point calculations as detailed below
(see also sections 2.4.5 and 2.4.6 for arithmetic
operators acting on variables):-

OPERATOR DESCRIPTION EXAMPLE OF EXAMPLE OF
» STACK BEFORE STACK AFTER
QPERATION QOPERATION
+ Leaves the sum nl + n2. 2 8
nl n2 N3 6 9
9 -
- Leaves the difference 2 4
nl - n2 6 9
nl n2 8 5 0 2 nB 9 -
Leaves the product nl.n2 -2 -12
nl n2 a 8 0 & ® l"l3 6 4“"
9 —

-2.9- P

2.4.1 Arithmetic Operators/Cont.

OPERATOR

ABS

MAX

MIN

MINUS

SOR

SQRT

SIN

COos

ATAN

DESCRIPTION

Leaves the ratio nl/n2
nl n2 n3

Leaves the absolute value
Nl «.s0. N2

Leaves the larger of top
two entries
nln2 n3

Leaves the smaller of top
two entries
nl n2 ..., 03

Negates the top entry
nl n2

Squares the top entry
nl e s 000 n2

Square roots the top

entry
nl n2

Forms the Sine of the top
entry
nl n2

Forms the Cosine of the
top entry
nl «.e0.. N2

Forms Arctangent (in
range + pi/2 radians) of
the top entry.

nl n2

EXAMPLE OF
STACK BEFORE
OPERATION

-2
6
9

-2

(o] Fo 1 § \O)

OOV o

EXAMPLE OF
STACK AFTER
OPERATION

2

6
9

[=9.12764E-1]

6
9

i

4.08487E-1]

6
9

[=1.10715]
3

9

-2,10~-

2.4.1 Arithmetic Operators/Cont.

Forms Arctangent{in range
+pi radians) of the 2
argument value in the top

imaginary (nl) and real
(n2) parts. It provides
the same function as ATAN
(nl/n2) but with the
ability to distinguish
between all 4 guadrants.

Places value of e at top
Exponentiation of top
Fdrms Natural Log (to
base e) of top entry.

Places value of pi at top

OPERATOR DESCRIPTIOCN
ATAN2
2 stack entries,
interpreted as the
nl n2 «.... N3
E
of stack
..l.On
EXP
entry.
nl s & 3 8 » n2
LN
Nl .oee00 N2
PI
of stack.
esoes D
INT

Replaces the top of stack
value with 1ts integer
part,

nl n2

EXAMPLE OF
STACK BEFORE
OPERATION

-2

6

9

Bd4dszs

EXAMPLE OF
STACK AFTER
OPERATION

[1.89255 |
5

[2.71828 |
2
6

[7.38906 |
6
)

[0.693147 |
6
)

[3.14159 |
2

-2,11-

2.4.2 Boolean or Logical Operators

QOPERATOR

AND

OR

XOR

NOT

The interpreter allows boolean or logical operators to be
used on the parameter stack. These operators work on the
top one or two entries of the stack and use the logic
state of the 16 bit word. For all operators except NOT
the top of stack number is first rounded to the nearest
integer and limited to the range 0 to + 65535, These
operators will however, generally be used with the digital
input/output parameters.

DESCRIPTION EXAMPLE OF EXAMPLE OF
' STACK BEFORE STACK AFTER
OPERATION OPERATION

Leaves the AND function 0

of the top 2 entries 1 1
after rounding and 1 ’
limiting.

nl n2 «.... 03

Leaves the OR function of 0 0
the top two entries after 0 1
rounding and limiting. 1 -
nl n2 03

Leaves the XOR function 0 0
of the top two entries 0 1
after rounding and 1 -
limiting.

nl n2 n3

Replaces a zero top entry 0 1
by a 1; otherwise by a 0. 1 1
nl n2 «.... 03 1 1

_2] 12-

2.4.3 Comparison Operators

OPERATOR

0>

0<

There is often a requirement to compare the value of two
stack entries to determine a subsequent course of action.
The 6433 interpreter uses the Comparison Operators for
this purpose. They result in the top of stack number being
either a 0 or a 1 and are usually followed immediately by
an IF operator. An example is shown in section 2.7.

DESCRIPTION EXAMPLE OF EXAMPLE OF
STACK BEFORE STACK AFTER
OPERATION OPERATION

Leaves a true flag if nl
is greater than n2;
otherwise leaves a false
flag.

nl n2 £

WO i
\Of

Leaves a true flag if nl 4
is less than n2; ' 7
otherwise leaves a false 3 -
flag.

nln2 £

W

Leaves a true flag if nl
is equal to n2; otherwise
leaves a false flag.

nl n2, £

-

~Jlfoiin

Leaves a true flag if n
is greater than 0;
otherwise leaves a false
flag. :

N «o.as £

128 Los]
]

Leaves a true flag if n -7
1s less than 0; otherwise 5
leaves a false flag. - -
n £

1
U =

-2.13- p e

2.4.4 Signal Input/Output Operators

Most programs at some time require either to fetch data
from some source and put it on top of the parameter stack,
or to take the data already
transfer it to some destination.

on top of the stack and
The 6433 interpreter

incorporates special memory operators to carry out these
tasks. Examples are shown in section 2.7.
QOPERATOR DESCRIPTION EXAMPLE OF EXAMPLE OF
STACK BEFORE STACK AFTER
OPERATION OPERATION

GETAN Moves Analogue data from 2 DATA
the input or output Bnl 1 -
Cn2 to the top of the - -
stack.
nl n2 .,....n3

SETAN Moves BAnalogue data from 2 -
the first stack entry to 2 -
the input or output. DATA -
nl Bn2 Cn3 ...

GETDIG Moves data from the input 2 DATA
or output Bnl Cn2 to the 3 -
top of the stack. - -
nln2 n3

SETDIG Moves data from the first 2 -
entry to the input or ' 4 -
output Bn2 Cn3. DATA -
nln2 n3 ..o

GETPAR Moves data from block Bnl 56 DATA
parameter Pn2 to the top 2 -
of the stack. - -
nl n2 N3

SETPAR Moves data from the first 56 -
stack entry to block Bn2 3 -
parameter Pn3. DATA -
nl n2 n3

-2.14-
- -—
rs=

2.4.4 Signal Input/Output Operators/Cont,

Note that when setting Outputs from within a program it
may be desirable to inhibit possible interruption from the
front panel by wusing the pushbutton disable feature
available 1in the ST status word. An alternative method,
which also prevents changes via the RS422 serial link, is
to use the output limits, in the case of A&nalogue Outputs,
or the output masking bits, in the case of Digital Outputs

to clamp the data at the desired value. This requires
writing to the HO and LO or DS parameters respectively
instead of wusing SETAN and SETDIG. When writing to

analogue output limit parameters HO and LO, care is needed
to ensure that the High and Low range values HR and LR may
not be exceeded, otherwise a run-time error may result.
This is done simply by reading these parameters and using
the MAX and MIN operators as appropriate.

—2 » 15—

2.4.5 Global Variable Operators

Internal variables 1 to 64 may be accessed in a similar
way to input/output, as follows:

OPERATOR DESCRIPTION XAMPLE OF EXAMPLE OF
STACK BEFORE STACK AFTER
OPERATION QOPERATION
GETVAR Moves data from wvariable 3 DATA
vnl to the top of the 6 6
stack. 2 2

nl n2

SETVAR Moves data nl from the 3 6

top of the stack to DATA -
variable Vn2. 6 -

nl n2 s % 8 s 0

Two further operators facilitate implementation of
difference equations by forming the difference and the sum
respectively between the top of stack value (usually a new
analogue input) and a value stored in a variable.

DIFVAR Leaves the difference 2 -5678
- nl-vn2 between the first 1
entry nl and the value -
vn2 of the variable V2=5679 V2
defined by the second
entry. The first entry
is stored as the new
variable value. Used for
numerical differentiation
nl n2 «.... 03

]
o

SUMVAR Leaves the sum nl+Vn2 of 2 5679
the first entry and the 1 -
value Vvn2 of the variable - -
defined by the second V2=5678 V2=5679
entry. The sum is stored
as the new variable
value. Used for
numerical integration.
nl n2 n3

-2,16~

2.4.6 Local Variable Operators

OPERATOR

GETARG

SETARG

GETRES

The 8 local variables (see section 2.3.2) available within
a FORTH word following an ARG definition
in the same way as global variables.

in section 2.7.

DESCRIPTION

Moves data from argument
Anl to the top of the
stack.

nl (... N2

Moves data from the top
of the stack to argument
An2.

nl n2 (...,

Moves data from result
Rnl to the top of the
stack.

nl N2

R8

R1
A5
A4
A3

R8
R7

R1
Ad
A3

R8
R7
R6
R5
R4
R3
R2
R1
A5
Ad

EXAMPLE OF
STACK BEFORE
OPERATION

U} =] b

oo |~ OOfONINO

Lamd %21 L ad A W8

~licolun

A8
R1
A5

Ad
A3

R8
R7

R1
A4

A3

A2
Al

R8
R7
R6
R5
R4
R3
R2
R1
A5
Ad

EXAMPLE OF
STACK AFTER
OPERATION

may be accessed
An example is shown

U = QO

oo | OOl LN N0

1 [=foolun

54

85

-1

11

59

54

15

25

-2,17-

2.4.6 Local variable Operators/Cont.

OPERATOR DESCRIPTION EXAMPLE OF EXAMPLE OF
STACK BEFORE STACK AFTER
OPERATION OPERATION
SETRES Move data from the first 3 R8 85
stack entry nl to 1 R7 -1
result Rn2. R8 85 R6 6
Nl N2 ceees R7 -1 R5 11
R6 6 R4 99
R5 11 R3 1
R4 99 R2 8
R3 54 R1 7
" R2 8 A5 15
R1 7 Ad 25
AS 15 A3 -
Ad 25 A2 -

2.4.7 Timer Operators

Timers 1 to 16 may be loaded with a value or read in a
similar way to variables.

OPERATOR DESCRIPTION EXAMPLE OF EXAMPLE OF
STACK BEFORE STACK AFTER
QOPERATION OPERATION
GETTIM Moves data nl (seconds) 3 DATA
from timer Tn to the top 6 6
of the stack. 2 2

nl «¢0.. N2

SETTIM Moves data nl (seconds) 3 6
from the first stack DATA -
entry to timer n2. 6 -

nl n2

+TIM Adds data nl from the 3 6
first stack entry to the DATA -
value in timer n2. 6 -

nl n2 ..¢..

-2,18~

2.4.8 Stack Manipulation Operators

With Reverse Polish Notation many calculations <can be
shortened if the user is allowed to manipulate the entries
on the stack directly before using the arithmetic
operators. To facilitate this the . 6433 Interpreter
supports the following stack manipulation operators.

Use of the Argument and Result Operators is introduced in
section 2.3.2 on local variables.

OPERATOR DESCRIPTION EXAMPLE OF EXAMPLE OF
: STACK BEFORE STACK AFTER
OPERATION OPERATION
DROP Discards the top entry 1 2
N oeoess 2 3
_ 3 —
DUP Duplicates the top stack 1 1
entry 2 1
N «coo. 0N 3 2
- 3
OVER Copies the second entry 1 2
over the top entry 2 1
nl n2 nl n2 nl 3 2
- 3
ROT Rotates the top three 1 3
. entries 2 1
nl n2zZn3 n2 n3 nl 3 2
4 4
SWAP Swaps the top two entries 1 2
nln2 n2 nl 2 1
3 3
ARG Defines the number of 3 R8 -
stack entries (up to 8) 9 R7 -
to be used locally as 8 R6 -
Arguments within the 7 R5 -
current operation. 6 R4 -
Reserves an 8 position 5 R3 -
results area at the top - R2 -
of the stack. Normally - R1 -
used at the beginning of - A3 9
the word definition. - A2 8
n Al A2 (up to A8) - Al 7
R1 R2 to RSB - 6
- 5

-2,19~

- g pad "=

EBd4dxzz

2.4.8 Stack Manipulation Operators/Cont.

OPERATOR

RES

DESCRIPTION

Defines the number of
parameters (up to 8) to
be left on the stack as
results of the present
operation. Drops all
Arguments and any
residual stack entries
above R8. Normally used
at the end of the word
definition.

Al A2 (up to A8) R1I R2 to R8 n
«es..R1 R2 (up to RS8)

EXAMPLE OF
STACK BEFORE
OPERATION
2
9
R8 8
R3 6
R2 5
R1 4
A3 3
A2 2
Al 1
0

EXAMPLE OF
STACK AFTER
OPERATION

| O]t

-2,20~-

2.4.9 Terminal Input/Output Operators

The

following print control operators permit the

transmitting and receiving of data via the front panel
RS232 socket. This facility would normally be used during
program development.

a)

b)

Character Input

REY Receives a character from the programming
terminal and pushes it to the top of stack (0
to 127) followed by a 1 which may be used as a
flag to detect that a character has been
received. A 0 is pushed to the top of stack if
there is no character in the input buffer.

Character Output

EMIT Removes the top of stack number and transmits
it as an ASCII character to the programming
terminal (Usual range 0 to 127).

If the number 1is greater than 127 it is
transmitted as 3 ASCII characters:

ESC, Cl, C2
where Cl and C2 are the characters of low and

high significance in the Hexadecimal
representation of the number.

e.g. 12810 = 8016 is emitted as ESC 0 8

25410 = FElG is emitted as ESC E F
NUMBER Receives a number from the programming terminal
and pushes it to the top of the stack. Entry
of a number would normally be in response to
some suitable prompt. The number must be
terminated by a carriage return. Note that

execution pauses while the 6433 awaits a NUMBER
entry so care must be taken when using this
facility.

An invalid number is not accepted, but may be
edited and re-entered.

Prints and discards the top of stack number.

P Defines the start of a print string. The
string must be terminated by a " character

B4ax

2.4.9 Terminal Input/Output Operators/Cont.

b) Character Qutput/Cont.

SPACE Transmits a space character to the programming

rerminal.

CR Transmits a carriage return character to the

programming terminal.

LF Transmits a line feed character to
programming terminal.

BS Transmits a backspace character to
‘ programming terminal.

NL Transmits a new line (CR LF) character to the

programming terminal.

A Print command may be executed both within a programme

and immediately under Programming mode.

Note that an operator for forward space is not included in
the Fixed Dictionary because no standard ASCII code exists
for this function. However, it may be generated 1in the
User Dictionary wusing a definition of the following form

(where 9 1is a commonly adopted code)

: FS 9 EMIT ;

-2.22-

2.4.10 Display Control

The following operators allow access to the front panel

display.
channel
may be

The ability to force the display to a selected
(after reading the current channel if necessary)
useful for alarm annunciation and the 8 character

"Tag" display may be used for displaying relevant
information.

GETBCN

SETBCN

TAG. "

Returns the block and channel number of the
information currently displayed on the front
panel.

veees B C

Sets the front panel display to the given block
and channel number.
B C s 2 8 s @

Sends the ensuing text string (up to 8 ASCII
characters) to the Tag display of the selected
channel. The string must be terminated by a "
character. If 1less than 8 characters are
transmitted then any remaining characters are
left undisturbed.

-2,23=-

- g g ey

2.5 Program Control Statements

In order to start and stop program execution, skip sections of
program depending upon expression values, and repeat certain
statements, a number of control statements are necessary.

2.5.1 DO LOOPS
DO... LOOP

The DO and LOOP statements allow repeated execution of a
block of code. DO and LOOP must always be used as a pair.
The code section which they enclose can be of any length.
This code is executed repeatedly; and an index value I is
available.

When DO sets up the loop it takes two arguments from the
stack. The top stack numper is the initial index value of
the loop and the second argument is the final value plus
1. If the initial value is 0 then the second argument 1is
the number of times round the loop.

Note that loops may be nested. On execution of LOOP the
stack is checked for an overflow or underflow condition.

An example is shown in section 2.7.
1 -

The operator I retrieves the index value of a loop and
copies it onto the stack. It is useful for indexing.

LEAVE

LEAVE is used for conditional exit control from a DO LOOP.
1f LEAVE . is executed within a loop it will set the limit

to the index value, causing the loop to exit when LOOP 1s
next executed.

DO...+LOOP

Whereas the DO...LOOP index always increments by 1, the
word +LOOP allows other increments. Each time around the
loop it takes the number off the stack for the increment.
This increment may be computed and changed during loop
execution. It may also be negative.

ol

-2.24-

2.5.2

Continuous Loops

BEGIN..,.REPEAT

Begin starts the beginning of a continuous program loop.
Only one BEGIN...REPEAT structure can be continuously
executed at any time.

REPEAT terminates the BEGIN structure. On execution of
REPEAT the stack is checked for an overflow or underflow
condition.

A BEGIN...REPEAT structure should normally only be used
within the program MAIN executed at power up.

An example is shown in section 2.7.

BEGIN...UNTIL

Whereas a BEGIN...REPEAT loop is endless, using UNTIL
instead of REPEAT allows exit from the loop when a true

condition is satisfied.

Conditional Branches

IF...ELSE...ENDIF

The IF statement destructively tests the number-on the top
of the stack and skips program statements up to the
following ELSE or ENDIF statement.

If the top of stack number is not 0 then the statement
after IF is executed. If the top of stack number is 0
then the statement after ELSE is executed instead.

ENDIF terminates an IF... structure. Every IF must have
a corresponding ENDIF,

The ELSE operator is optional.

CASE...ENDCASE

The CASE structure allows branching to one of two or more
possible routines depending on the value of the argument;
Viz "In the Case of....do....")

The definition should always include an appropriate number
of OF...ENDOF statements which define the routines
corresponding to particular CASE argument values.

CASE leaves its argument at the top of the stack. This is
dropped if an appropriate OF or ELSEOF statement is
executed; otherwise it is dropped by ENDCASE.

-2.25=-

T

2.5.3 Conditional Branches/Cont.

OF...ENDOF

The OF function defines the routine which is executed if
the CASE argument 1is less than or egual to its own
argument. 1f the OF condition 1is satisfied, the case
argument is dropped and execution continues with the words
following the OF. If the OF condition is not satisfied,
the case argument 1is unaffected, and control is
transferred to the word following the ENDOF. ENDOF
terminates the OF definition.

It would be normal to define a series of OF statements in
numerical order. Once one OF condition has been
satisfied, any remaining OF statements are skipped and
execution continues after the following ENDCASE.

ELSOF...ENDOF

The ELSOF statement allows for the possibility that the
CASE argument may fall outside the range (i.e. greater)
than the maximum OF value. In this event the ELSOF
function provides a useful means of defining a default
routine. It must be terminated by ENDOF in the same way
as OF.

The ELSOF operator is optional.

Note +that with a CASE argument of 1, the CASE...
OF...ELSOF structure becomes equivalent to an IF...ELSE
structure.

Examples are shown in section 2.7.

-2.26-

2.6 Interpreter Facilities

The 6433 interpreter incorporates a number of facilities to help
the user create, test, debug and subsequently edit a program.

2.6.1 Operating Modes

The following operating modes control the execution cf the
interpreter.

a)

b)

Command Mode

Command mode 1is entered automatically when a terminal
is plugged 1into the front panel RS232 socket and is

indicated by display cf ??2CMD. This invites the user
to enter a 2 character mnemonic in order to read and
if necessary change any of the configuration

parameters.

It is convenient to use a VDU to emulate the Hand Held
Terminal when programming a 6433. For this purpose
certain characters provide standard handheld terminal
functions as follows:

Z ??2CMD (Command Mode)

W Scroll
L Enter +
M Enter -~

Command mode may be re-entered from Programming Mode
by Keying CTRL Q.

Program Mode

Programming Mode may be entered by keying CTRL P
Access 1s only granted on acceptance of the valid 3
digit security code as requested by the VDU:-

pPlease enter your security number
Entering the correct code will result in the response:
Hit space bar to change name¥

If no change 1is required to the user name then
carriage return will result in:

7,.C.5. Forth Version 1l.(1)%
Have a nice day®

Hitting the space bar will invite the user to log on
with a new name up to 7 characters (including spaces)
and will print a new security code which should be

noted.

In Program Mode the available user memory is displayed
after each entry.

-2.27_'

2.6.1 Programming Utilities/Cont.

b)

c)

d)

Program Mode/Cont.

If the 6433 has not yet been programmed with a valid
security code then the user will be invited to log on
with a suitable name the first time that Programming
Mode is entered.

Continuous program execution 1s terminated when in
Programming Mode.

Note that the VDU screen may be cleared by causing the
6433 to send a "formfeed” character using the
statement ‘

12 EMIT

Program Execution

A FORTH word may be executed in immediate mode by
entering the word name without a colon.

Continuous Program execution is achieved by
incorporating a BEGIN...REPEAT loop within a FORTH
word. The reserved word MAIN would normally be used

to allow automatic execution at power-up.

If a program 1is not being executed then the 6433
behaves just like a 6432 Signal Processor. In this
mode, the input/output ranging and status may be
checked out before executing a program.

When no program is being executed the message HALTED
flashes in the Tag display.

Program execution may be terminated by entering an
ESCAPE character or by re-entering Programming mode.

Escape

Entering an ESCAPE character restores the executive to
normal Program Mode and clears the stack.

It 1is wused to terminate program execution, to exit
from the 1line editor and to recover from an error
condition.

-2,28-

B4z

2.6.1 Operating Modes/Cont.
e) Power-Up

At power-up the user program is loaded from ROM to RAM
and the executive looks for the reserved word MAIN.
If this is found then this word is executed. Because
program execution always uses the wuser dictionary in
the RAM memory rather than ROM, changes can be made
and validated while leaving the original program
resident in ROM. Needless to say care should be taken
to ensure that the updated program is stored in ROM
before removing power because anything in the RAM area
is over-written at power-up.

If the Word MAIN is not found then the 6433 comes up
in either Command Mode or Programming Mode depending
on which was last selected.

2.6.2 System Utilities

a)

b)

Terminal Configuration

WINDOW Set terminal line length

This command sets up the number of ASCII characters
that may be displayed in a single 1line on the
programming terminal. For a VDU it is normally set to
79, or 1 less than the number of characters per line
to avoid automatic line feeds after the 80th position.

Dictionary Management

FWORDS List Word names in the fixed dictionary

This command lists the interpreter fixed dictionary
words on the terminal.

UWORDS List Word names in the user dictionary

This command lists the user-created dictionary words
on the terminal.

ULIST List User Program

This command provides a complete 1listing of the

program by .printing all the words in the user

dictionary, in the order in which - they were entered.
The listing is formatted with & new line after each
operator and indenting for program branches and loops
etc. Entering any normal character (e.g. the space
bar) may be used to interrupt the listing, and to
cause it to continue subsequently.

FORGET Last Word in User Dictignary

The FORGET statement causes the last defined word to
be dropped from the user dictionary. Words may only
be erased on this last in first out basis since other
words may be referenced by later entries.

INSERT Insert new word in user dictionary

Inserting a new word within the existing user
dictionary 1is done by entering INSERT followed by the
name of the word before which the new one is to be
placed. The 6433 interpreter responds with a message
that it is inserting before the desired Word, and then
the new word is defined with a colon and semi-colon in
the usual way. Clearly the new word may only call
other words which are deeper in the dictionary.

et

-2.30-

2.6.2 System Utilities/Cont.

b)

c)

a)

Dictionary Management/Cont.

NEW Erase RAM memory

The NEW command clears the RAM memory soO as to make
way for a new program. It is most useful when using
an intelligent programming terminal to download a
complete program, rather than simply editing an
existing program when use of FORGET and INSERT is more
appropriate. The program in EEPROM is undisturbed.

Memory

STORE Store Program from RAM to ROM

Once a program has been fully debugged and tested it
should be transferred from the RAM area of the ROM/RAM
emulator card to the ROM area. Note that because at
power up the program in ROM is automatically
transferred to the RAM, if the RAM area contains a
different (i.e. edited) version then it will be
overwritten.,

The STORE utility takes up to about 40 seconds to
execute depending on the program size. Data is
verified as it is written and progress 1is indicated by
printout of an asterisk every 100 bytes, or about one
per second. If errors occur then a printout occurs of
the location and both the original and incorrect data.

RECALL Recall Program from ROM to RAM

The RECALL utility transfers the content of the ROM
area of the ROM/RAM emulator card into the RAM area.
This is wuseful 1in reverting to a previous program
after trying an edited version.

CLEAN Clean ROM Memory

This utility cleans the ROM memory area by restoring
it to the unprogrammed state. It operates in a
similar way to STORE by writing FFFF to every
location.

Debugging

TRA-ON, TRA-OFF

A trace facility 1is available to assist in program
debugging. This is enabled and disabled by the TRA-ON
arnd TRA&-OFF commands respectively. When trace 1is
active the 6433 prints out user words as they are
executed, together with the content of the stack on

exit.

'-2. 31—

- gl gy "=

B4z

P ST SN

2.6.2 System Utilities/Cont.
d) Debugging/Cont.
Note that stack data is printed (non-destructively)

in the order in which data is peeled off; i.e. Top of
Stack first, at the left of the display.

- -2.32—
re

2.6.3 Programming Terminal Utilities

84

=3

The 6433 software provides the following utilities to
allow the wuse of an intelligent programming terminal for
program creation, editing and storage.

a) Load User Program

This command allows the user to download a program to
the 6433 from a file <created by an intelligent
terminal. The terminal must support XON-XOFF protocol.

Load is initiated by the character STX (CTRL Bj). Load
is terminated by the character ETX (CTRL C). This mode
is protected by the security code.

Any commenting appearing within brackets is stripped
off by the 6433 interpreter.

b) Save User Program

This command allows the user to dump a created program
from the 6433 to a suitable storage medium.

It is similar to the command ULIST except that the user
program is listed one word at a time. Save 1is
initiated by an ENQ character (CTRL E). The 6433
transmits each Word in turn starting at the bottom of
the User Dictionary. Each word is framed by an STX
Start of text character (CTRL B) and an ETB End of
transmission block character (CTRL W). The programming
terminal must then send another ENQ character to
initiate sending of the next word. Any other character
terminates Save mode. The 6433 indicates the end of
program by transmitting an ETX character (CTRL C)
instead of ETB. T

The Save utility responds to XON-XOFF protocol.

-2,.33~

=g a2

B4xz=

2.6.4 Program Creation

Applications programs are built up by creating a suitable
structure of FORTH words within the user dictionary.

a)

b)

NAME:---.--.. ;

A colon character defines the start of a new word in
the user dictionary. A word name may consist of up to 7
ASCII characters; other characters are counted but

their wvalues are not displayed. The first word
following the colon is the program name and the
remaining words are the program statements. These can

only consist of:-

Literals
Words from the fixed dictionary
Previously created words from the user dictionary

A semi-colon terminates the program statements begun by
the colon.

Note that both the colon and semi colon must be
separated from adjacent characters by a space, in the
same way as any other operator.

Any words which the interpreter does not recognise will
cause an-error. This means that entering of a program
must follow a discipline of defining the lowest level
routines first and working up in program hierarchy.

Syntax errors will cause an appropriate message to be
transmitted, and the offending statement will be
displayed with the cursor positioned so that the error
may be corrected (see section 2.6.5 on Line Editor).

A word may be examined by typing a colon followed by a
space and then the word name. ,

The maximum length of a word is governed by the size of
the Character Input buffer and the Compiler Output
puffer. However, it 1is good programming practice to
limit the word length to a single line, as set by the
WINDOW function.

MAIN

The user word MAIN is reserved in that it defines the
program statement which is automatically executed at
power-up of the instrument. It normally defines the
master BEGIN...REPEAT loop which schedules the program
functional tasks together with any initialisation,
reset etc.

-2.34-

2.6.4 Program Creation/Cont.

¢) ERROR

The user word ERROR is reserved for execution when the
executive traps on a run-time error and running of the
main program is terminated.

It may be conveniently used to set outputs to a safe
state or initiate an appropriate warning. The word
ERROR could also be called from within the program to
detect an abnormal condition such as when a
time-dependent task over-runs or locks out. A common
requirement would be for a "watchdog" task linked to
the MAIN task scheduling loop, and updating a digital
output.

"'2. 35‘-

- gl P g

B4as=

R S A S S T ST

2.6.5 Line Editor

The 1interpreter incorporates a Line Editor which allows
the user to insert and delete characters in the currently
displayed program statement.

The following functions are available:-

Key Function
BACKSPACE Move cursor back one position
TAB Move cursor forward one position
- Note: This relies on tabs being set at all
character positions. The tab
character is defined using the SETFS
command .
DELETE Delete character at current cursor position

Characters may be inserted immediately before the current
cursor position.

Note that attempting to edit the word name will create a
new word, without losing the original word definition.

Editing mode may be aborted by pressing the ESCAPE Kkey.

el

~2.36-

2.6.6 Error Reporting

Various types of errors are detected by the FORTH
interpreter. These are summarised 1in the Programmers
Reference List. In general the ESCAPE key must be pressed
to recover from a programming error.

a) Syntax Errors

The interpreter checks all entries in Programming Mode
for syntax errors and prints an appropriate error
message. The offending statement will be displayed
with the cursor positioned so that the error may be
corrected. A FORTH statement will not be accepted into
the user dictionary unless it is free of errors.

b) Run-time Errors

Run-time - errors, such as attempting to operate on an
empty stack, cause an error message to be sent to the
terminal (if connected) and program execution 1is
halted.

If the reserved word ERROR has been defined then the
executive will trap on a run-time error and execute the
word ERROR. This facility could be used to display an
appropriate warning or set the outputs to a safe .
condition.

c) Halt Condition

When no program is running, which may be deliberate or
after a fault condition, the message HALTED flashes on
the Tag display.

"'2.37-

- g

2.7 Language Examples

The following figures give sample word definitions designed to
illustrate the use of some of the available operators.

The first example shows a simple task scheduler which may be
used in connection with the following examples. All these
listings are formatted with indenting for loops etc. and each
line is provided with detailed comments. Note that at least one
space is required between each operator or data. This includes
the colon and semi-colon characters which delimit the beginning
and end respectively of the word definition. Any excess spaces
are stripped off on entry. Since any text enclosed within
parentheses is ignored by the 6433 interpreter the examples
could be block downloaded to an instrument. For details see the
6433 Programming Terminal User Guide.

In practice an application program is likely to have a number of
tasks and it 1is <convenient to represent the configuration in
diagramatic form. Appendix C shows suggested documentation for
a typical application.

e

-2.38-

B4

file ref PROJO03 Z0ll/A memory 20 bytes plus 2 bytes per task call
5 October 1983)
: TASKIL
: TASK2
: TASKn
MAIN (Defines word MAIN, the main task scheduling loop,
executed at power-up)
BEGIN (begin continuous loop)
TASKL (Call word for Task 1)
TASK2 (Call word for Task 2)
(:)
TASKn (Call word for Task 3)
REPEAT (End of loop; loop back to BEGIN)

; (End of word MAIN)
(Note tnat all tasks run within MAIN must be recognised by the interpreter

- ‘prior to loading MAIWN; 1.e. MAIN will generally be the last task in the
user dictionary; hence TASKl, TASK2 etc are defined earlier)

Fig 2.1 MAIN: Simple Task Schedular

-2,39-
e

B4szs

file ref PROJ0O03 Z013/A
4 October 1983 JSH)

CALC

1l 1 GETAN

1 2 GETAN

SQRT

1 3 GETAN

2 1 SETAN

memory 74 bytes

(Detines a word CALC which evaluates the
expression OP1 = [SQRT [PV1-PV2]] / PV3
where Analogue inputs are on block 1

Analogue outputs are on block 2)
(Fetches the prime variable value of analogue
input Block 1 Channel 1, and puts it on top of the
stack)
(Fetches the PV of Block 1, Channel 2, and puts it
on top of the stack wnile the PV of Channel | is
pushed down one location)
(Subtracts the top location of the btack from the
second location and leaves the result PVi-PVZ on
top)
(Takes the square root of the value at the top of
the stack and leaves the result in its place)
(Fetches the PV of Block 1, Channel 3 and puts it
on top of the stack, pushing down the result of the
SQRT operation to the second location)
(Divides the value held in the second location of
the stack by the value on top and leaves the result
o top)
(Routes the evaluated exprcsslon on top of the
stack to the OP parameter of analogue output Block
2, Channel 1)
(Defines the end of word CALC)

Fig 2.2 Arithmetic Computation And Signal Input/Output

~2.40-

Fig 2.3

Low cut off on analogue 1input

file ref PROJO03 Z0O07/A
3 October 1983 JSH)

LOowCuT

1l 1 GETAN
DUP

5 1 GETAN

>

IF
2 1 SBETAN

ELSE

DROP

0

2 1 SETAN
ENDIF

memory

94

(Implements a low cut off on an analcgue

input)

(Gets analogue input on block 1 chananel 1)

(Duplicates top of stack value;
input for later)

3aves

(Gets value for cut off setpoint on block

channel 1)

(Tests whether input 1s greater than
leaves a 1 it true, otherwise a

setpoint;
0)

(True'condition)
(Sets output block

input)

(False condition)
(Drop input value)
(Put 0 at top of stack)

channel 1 egual to

(Sets output block 2 channel 1 equal to ()

(End of IF...ELSE structure)
" (End of word) -

Comparison Operator and Conditional Branch:

IF...ELSE...ENDIF Structure

Low Cut 0Off on Analogue Input

-2.41-

file ref PROJ0O03 Z008/A memory 76 bytes
3 October 1983 JSH)

: SHUNT (Defines a word called SHUNT to calculate the
value of 2 parallel resistors according to the
formula R1.R2/[R1+R2] Rl R2 ... R1//R2)

2 ARG (Defines the top two stack entries as the 2
arguments Rl and R2 for tihe following routine. ARG
also reserves an 8 entry results area at the top ot
the stack)

1 GETARG (Gets thevalue of Argument 1,Rl, and pushes 1t to
the top of the stack)

2 GETARG (Gets the valueofArgument 2,R2, and pushes it to
the top of the stack)

* (Multiplies together the two previous values,
leaving the product R1.R2 at the top of the stack)

1 GETARG (Getsthe value of Argument 1,Rl, and pushes it to

, the top of the stack)

GETARG (Gets the value ofArgument 2,R2, and pushes it to

the top of the stack)

+ (Adds together the two previous values, leaving

the sum R1+R2 at the top of the stack.
Note that the next value down on the stack is now
the product R1.R2)

N

/ (Divides the product R1.R2Z2 by the sum R1+R2
leaving the
result)

1 SETRES (Defines the top of stack value as Result number
1)

1 RES (Declares that 1 Result will be left at the top ot

the stack) ;{Defines end of’word)

{(c.t. alternative implementation using stack manipulation operators which
altnough more efficient is less straightforward to understand)

Fig 2.4 Local variables: ARG...RES Structure
Computation of Value of 2 Parallel Resistors

-2,42-

file ref PROJOO3
4 October 1983 JSH)

SHUNT

OVER

OVER

*
ROT

ROT

+
/

2012/A memory 23

bytes

(Defines a word called SHUNT to calculate the
value of 2 parallel resistors according to the

formula R1R2/[R1+R2] RI1
(Brings value of Rl from
and duplicates it at the
(Brings value of R2 from
and duplicates it at the

®2 +... R1//R2)

second position 1in stack
top)

second position in stack
top)

(Multiplies top 2 stack values leaving R1.R2 at
(Moves value of Rl from 3rd stack position and

pushes onto top of stack)

(Moves value of R2 from 3rd stack position and

pushes onto top of stack)

(Adds top 2 stack values leaving RI+R2 at top)
(bivides top stack value R1+R2 by previous result

R1.R2)
(End of word)

(c.f. longer but clearer implementation using ARG-RES structure)

Fig 2.5

Stack Manipulation Operators

Computation of Value of 2 Parallel Resistors

-2,43-

ol gl

file ref PROJOO3 2009/A memory 70 bytes
3 October 1983 JSH)

COMBIAS

DO

H =

HN A+ O

SETAN
LOOP

7

FIG 2.6

(Defines a word to add a common bias to the first 4

inputs on block 1 and outputs on the
channels of block 2)

(Load final channel number +1 and initial channel

number)

(Start DO loop)

(Load block number of An.In board)

(Get current value I of index for use
number)

(Get analogue input for given block/channel)
TAN (Get bias value from block 5 channel 1)

(Add pias to input value)

(Load block number of An.Out board)

(Get current value I of index for use
number)

(Set analogue output with computed value)
(End of Loop)

(End of word)

DO...LOOP Structure

Adds a Common Bias to Each of 4 Inputs, Then

Retransmits on 4 Outputs

-2.44-

as channel

file ref PROJO0O3 Z010/A memory 104 bytes
5 October 1983 JSH)

SKIP (dummy default task)
: TASK1 (dummy task 1)
: TASK9 _ (dummy task 9)
i
BRANCH (Branch routine : calls one of 9 tasks subject

to the value of the input value on the stack.
An over-range value skips execution of any of the

tasks)
CASE (Start CASE structure, testing value at top of
stack)
1
OF (Test for a 1)
TASK1 (Call task no 1)
ENDOF
{ Tasks 1 to 8 as above)
:)
9
OF (Tests for a 9)
TASK9 (Call task no 9)
ENDOF ’
ELSOF (befault)
SKIP (Skip: default task for over-range input)
.ENDOF
ENDCASE {End CASE structure)

; {End of word BRANCH)

Fig 2.7 Conditional Branch: CASE...ENDCASE Structure

-2.45-

- gl PR =

2.8 Memory Reguirements

The user memory of the 6433 is 4 K or 4096 bytes. This figure
is reduced by several bytes because of the requirement to store
system constants such as the User Name and Security Number.
Available memory 1is listed on entering Program mode, pressing
the Escape key and also after entering or editing a FORTH word.

The memory requirement in bytes of FORTH statements may be
calculated using the following rules:-

a) Word Definition: Number of characters in the name string
+9, rounded up to an even number of
bytes

b) Literals (e.g. numerical arguments and constants): 6 bytes

c) Word Call : 2 bytes

a) Strings . Number of characters in the string +3,

rounded up to an even number of bytes.

- g

e) Operators : All 2 bytes, except for the following -
DO 2)always used as a pair
LLOOP, +LOOP 4)

BREGIN 2)always used as a pair
REPEAT 4)

IF _ 4)always used as a pair
ENDIF 2)

ELSE 4

OF 4)always used as a pair
ENDOF 4)

-2 .46~

B4dazs

APPENDIX A. 6433 Parameter mables

Software part No. RD 069748 issue 1, release 1

mable A.1 lists the 2 character Instrument command parameters of the
6433 Programmable Signal Processor used when accessing data via the
8260 Hand-held Terminal or the ASCII mode of the serial link
protocol. The similarly accessed Channel command parameters for the
4 different types of Input/Output Blocks are given in Table A.2.

Tables A.3.1 to A.3.4 inclusive give the corresponding Parameter
Numbers for the 4 types of Input/Output Blocks used with the Binary
mode of the protocol.

The table below shows the modification history of the 6433 software
with respect to changes in these parameter tables:-

SOFTWARE SOFTWARE MEMORY REMARKS
ISSUE RELEASE BOARD
1 1 MK 5 ASCII and Binarv modes of the

protocol supported

NOTES

The following points should be noted with regards to the tables:

TABLE A.2

(1) CN does not appear in the parameter list when accessing
parameters via the serial data link. Channels are individually
addressed via the link as described in the relevant sections
of the Communications Manual.

(2) The 1T and 2T Channel Tag characters do not appear when the
parameter list is scrolled via the (W}) command of the 8260
Handheld Terminal. Instead, .they must be accessed individually
by first using the 27?CMD prompt once the required Block and
Channel number (CN) has been selected previously.

TABLES A.3.]1 to A.3.4

* Oonly those parameters marked * are available with Enquiry
Polling

(3) Channel Tag Characters

I+ should be noted that for each Channel each half of the 8
character tag is itself split into two parameters:

1T Tl + T2

and

i

2T T3 + T4

A1 el

Appendix A/Cont.

(4)

Instrument Parameters

II, SW, MD and those Instrument parameters relating to the
Input/Output Blocks can be accessed from each of the board

types.

For real blocks 1 to 4 parameter numbers 1 to 8 refer to Sl to
A4 inclusive.

For pseudo blocks 5 to 8 parameter numbers 1 to 8 refer to 55
to A8 inclusive. '

—Aa 2—

COMMAND |COMMAND PARAMETER FUNCTION |UNITS|FORMAT PARAMETER TYPE
MNEMONIC
1I Instrument Identlity - 5 Monitor-only
Sl Channel scan and board type - 5
Input/Output
Al Historic alarms - 5 block 1
52 Channel scan and board type - 5
Input/Output
A2 Historic alarms - 5 block 2
S3 Channel scan and board type - 5
Input/Output
A3 Historic alarms - 5 block 3
S4 Channel scan and board type - 5
Input/Output
A4 Historic alarms - 5 block 4
S5 Channel scan and board type - 5 Pseudo-
Input/Output
A5 Historic alarms - 5 block 1
56 Channel scan and board type - 5 Pseudo-
) Input/Output
A6 Historic alarms - 5 block 2
S7 Channel scan and board type - 5 Pseudo-
Input/Output
A7 Historic alarms - 5 block 3
S8 Channel scan and board type - 5 Pseudo-
Input/Output
A8 Historic alarms - 5 block 4
SW Switch bank S1/S2 settings - 5
Status
MD Front panel and diagnostic - 5 words
status indications
TABLE A.1 List of 6433 Instrument Command Parameters and their

respective mnemonics

-An 3"‘

COMMAND |COMMAND PARAMETER FUNCTION |UNITS FORMAT| PARAMETER TYPE
MNEMONIC
CN(1l) |Block/Channel number - 6
ST Channel status - 5 Analogue
HR Prime Variable high range Eng 1
LR Prime Variable low range Eng 1 Input
HA High alarm (absolute) Eng 1
LA Low alarm (absolute) Eng 1 channels
AR Alarm routilng - 5
PV Prime Variable value Eng 1
1T(2) |Channel Tag characters 1-4 |ASCII 8 Channel Tag
2T(2) |Channel Tag characters 5-8 |ASCII 8 names
CN(1l) |Block/Channel number - 6
ST Channel status - 5 Analogue
HR Prime Variable high range Eng 1
LR Prime Variable low range Eng 1 Output
HO High output limit Eng 1
LO Low output limit Eng 1 channels
opP Prime Variable value Eng 1
1T{2) |Channel Tag characters 1-4 [ASCII 8 Channel Tag
2T(2) Channel Tag characters 5-8 |ASCII '8 names
CN(1) |Block/Channel number - 6
ST Block status - 5 Digital
AM Alarm masking bits - 5 Input
D5 Digital Input states - 5 channels
1T(2) |Channel Tag characters 1-4 |ASCII 8 Channel Tag
2T(2) |Channel Tag characters 5-8 |ASCII 8 names
CN(1l) |Block/Channel number - 5
sT Block status - 5 Digital
AM Alarm masking bits - 5 Output
DS Digital Output states and - 5 channels
enable bits
1T(2) |Channel Tag characters 1-4 |ASCII 8 Channel Tag
2T(2) |Channel Tag characters 5-8 |ASCII 8 names
TABLE A.2 List of 6432 Channel Command Parameters and their

respective mnemonics

-A.4-

CHAN

CHAN

CHAN

CHAN

CHAN

CHAN

CHAN

CHAN

CHAN

CHAN

CHAN

CHAN

0

8
1 16
2 24
3 32
4 40
5 48
6 56
7 64
8 72
1-2 80
3-4 88
5-6 96
7-8 104

TABLE A.3.1

S1 Al S2 A2 S3 A3 sS4

II’ S5 A5 56 A6 S7 A7 58 (4)
Ad
A8 SW MD (4)
ST* HR* LR* HA* LA* pV* AR*
ST* HR* LR¥ HA* LA* PV* AR*
ST* HR* LR* HA* LA* PV* AR*
ST* HR* LR* HA* LA* PV* AR*
ST* HR* LR* HA* LA* PV* AR*
ST* HR* LR* HA* LA* _PV* AR*
ST* HR* LR* HA* LA* PV* AR*
ST* HR* LR* HA* LA* PV* AR*
(3) (3) (3) (3)
T1 T2 T3 T4 | T1 T2 T3 T4
Tl T2 T3 T4 T1 T2 T3 T4
Tl T2 T3 T4 Tl T2 T3 T4
T1 T2 T3 T4 Tl T2 T3 T4

List of 6433 Parameter Numbers, [PNO]s,

and their respective mnemonics for

p’seudo-Analogue Input Boards

—AQS-
e

0 1 2 3 4 5 6 7
Sl Al S2 A2 S3 A3 S4
0 II S5 A5 56 Ag S7 A7 S8 (4)
A4 :
8 A8 SW MD (4)
CHAN 1 16 ST* HR* LR* op* HO* LO*
CHAN 2 24 ST* HR* LR* op* HO* LO*
CHAN 3 32 ST* HR* LR¥* op* HO* LO*
CHAN 4 40 ST* HR* LR¥* op¥* HO* LO*
CHAN 5 48 ST* HR* LR* op* HO* LO*
CHAN 6 56 ST* HR* LR* Oop* HO* LO*
CHAN 7 64 sST* HR* LR* Oop* HO* LO*
CHAN 8 72 ST* HR* LR* op* HO* LO*
(3) (3) (3) (3) :
CHAN 1-2 80 Tl T2 T3 | T4 T1 -} T2 T3 T4
CHAN 3-4 88 T1 T2 T3 T4 T1 T2 T3 T4
CHAN 5-6 96 T1 T2 T3 T4 T1 T2 T3 T4
CHAN 7-8 104 T1 T2 T3 T4 Tl T2 | T3 T4
TABLE A.3.2 List of 6433 Parameter Numbers, [PNO]s,
and their respective mnemonics for real
and pseudo-Analogue Output Boards
"A.s'-
- _*
res

CHAN 1-8 16

24

32

40

48

56

64

72

CHAN 1-2 80

CHAN 3-4 88

CHAN 5-6 96

CHAN 7-8 104

TABLE A.3.3

0 1 2 3 4 5 6 7

S1 Al S2 A2 S3 A3 S4
I1 S5 A5 S6 A6 S7 A7 S8 (4)
A4
A8 SW MD (4)
ST* AM* DS*

(3) (3) (3) (3)
T1 T2 T3 T4 T1 T2 T3 T4
T1 T2 T3 T4 T1 T2 T3 T4
T1 T2 T3 T4 T1 T2 T3 T4
T1 T2 T3 T4 T1 T2 T3 T4
List of 6433 Parameter Numbers, [PNO]s,

and their respective mnemonics for real

and pseudo-Digital Input Boards

-Ao 7"

ot

sl Al S2 A2 S3 A3 S4
0 11 S5 A5 56 Ab S7 A7 S8 (4)
24

8 A8 SW MD (4)
CHAN 1-8 16 ST* AM* DS*

24

32

40

48

56

64

72

(3) (3) (3) (3)
CHAN 1-2 80 Tl T2 T3 T4 T1 | T2 T3 T4
CHAN 3-4 88 T1 T2 T3 T4 T1 T2 T3 T4
CHAN 5-6 96 Tl T2 T3 T4 Tl T2 T3 T4
CHAN 7-8 104 T1 T2 T3 T4 T1 T2 T3 T4
TABLE A.3.4 List of 6433 Parameter Numbers, [PNO]Js,

and their respective mnemonics for real

and pseudo-Digital Output Boards

-A, 8-

CHARACTER 7-BIT BINARY HEXA- DECIMAL

CODE DECIMAL CODE
NUL Null 000 0000 00 0
SOH Start of Heading 000 0001 01l 1
STX Start of Text 000 0010 02 2
ETX End of Text 000 0011 03 3
EQT End of transmission 000 0100 04 4
ENQ Enquiry 000 0101 05 5
ACK Acknowledge 000 0110 06 6
BEL Bell 000 0111 07 7
BS Backspace 000 1000 08 8
HT Horizontal tabulation 000 1001 09 9
LF Line feed 000 1010 0A 10
VT Vertical tabulation 000 1011 0B 11
FF Form feed 000 1100 0cC 12
CR Carriage return 000 1101 0D 13
S0 Shift Out 000 1110 OE 14
SI Shift In 000 1111 OF 15
DLE Data link escape 001 0000 10 16
DC1 Device control 1 001 0001 11 17
DC2 Device control 2 001 0010 12 18
DC3 Device control 3 001 0011 13 19
DC4 Device control 4 (stop) 001 0100 14 20
NAK Negative acknowledge 001 0101 15 21
SYN Synchronous idle 001 0110 16 22
ETB End of Transmission Block 001 0111 17 23
CAN Cancel 001 1000 18 24
EM End of Medium 001 1001 19 25
SUB Substitute 001 1010 1A 26
ESC Escape 001 1011 1B 27
FS File Separator 001 1100 1C 28
GS Group Separator 001 1101 1D 29
RS Record Separator 001 1110 1E 30
Uus Unit Separator 001 1111 1F 31
DEL Delete, Rubout 111 1111 7F 127

TABLE B.1 ASCII Control codes

-B,.1l-

'f‘ﬁ

-y

Y

CHARACTER 7-BIT BINARY HEXA- DECIMAL
CODE DECIMAL CODE
]
- space 010 0000 20 32
{ - exclamation mark 010 0001 21 33
" - double guotation mark 010 0010 22 34
- hash (£ sign - ISO 7) 010 0011 23 35
% - dollar sign (- or £ sign) 010 0100 24 36
% - percentage sign 010 0101 25 37
& - ampersand 010 0110 26 38
! - single quotation mark 010 0111 27 39
(- left-hand bracket{round) 010 1000 28 40
) - right-hand bracket(round) 010 1001 29 41
* - asterisk 010 1010 2A 42
+ - plus 010 1011 2B 43
' - comma 010 1100 2C 44
- - minus 010 1101 2D 45
. - period 010 1110 2E 46
/ - oblique 010 1111 2F 47
0 011 0000 30 43
1 011 0001 31 49
2 011 0010 32 50
3 011 0011 33 51
4 011 0100C 34 52
5 >numerals 011 0101 35 53
6 011 0110 36 54
7 011 0111 37 55
8 011 1000 38 56
9 J 011 1001 39 57
: - colon 011 1010 34 58
; - semi-colon 011 1011 3B 59
< - less than 011 1100 3C 60
= - equals 011 1101 3D 6l
> - greater than 011 1110 3E 62
? - question mark 0l1 1111 3F 63
TABLE B.2 ASCII character codes
P = -B.2-

CHARACTER 7-BIT BINARY HEXA- DECIMAL
CODE DECIMAL CODE
@ - "at" sign 100 0000 40 64
A 100 0001 41 65
B 100 0010 42 66
C 100 001l 43 67
D 100 0100 44 68
E 100 0101 45 69
F 100 0110 46 70
G 100 0111 47 71
H 100 1000 48 72
I 100 1001 49 73
J 100 1010 4A 74
K 100 1011 4B 75
L 100 1100 4C 76
M 100 1101 4D 77
N }upper case letters 100 1110 4E 78
0 100 1111 4F 79
P 101 0000 50 80
Q 101 0001 51 81
R 101 0010 52 82
S 101 0011 53 83
T 101 0100 54 84
U 101 0101 55 85
v 101 0110 56 86
W 101 0111 57 87
X 101 1000 58 88
b4 101 1001 59 89
yA 101 1010 5A 90
[LH bracket (sgquare) 101 1011 58 91
\ oblique 101 1100 5C 92
] RH bracket (square) 101 1101 5D 93
AN up arrow (4 common usage) 101 1110 5E 94
underline (« common usage) 101 1111 5F 95

TABLE B.2

ASCII character codes

-B,3-

e

CHARACTER 7-BIT BINARY HEXA- DECIMAL

CODE DECIMAL CODE

- apostrophe 110 0000 60 96

a 0 110 0001 61 97

b 110 0010 62 98
c 110 0011 63 99
d 110 0100 64 100
e 110 0101 65 101
£ 110 0110 66 102

g 110 0111 67 103
h 110 1000 68 104

i 110 1001 69 105 -

J 110 1010 64 106

k 110 1011 6B 107
1 110 1100 6C 108

m 110 1101 6D 109
n \.lower case letters 110 1110 6E 110
o 110 1111 6F 111
P 111 0000 70 112

q 111 0001 71 113

r 111 0010 72 114

s 111 0011 73 115

t 111 0100 74 116
u 111 0101 75 117

v 111 0110 76 118
w 111 0111 77 119
X 111 1000 78 120

y 111 1001 79 121
z 111 1010 7A 122

{ - LH bracket (curly) 111 1011 7B 123
! - vertical broken line 111 1100 7C 124

} - RH bracket (curly) 111 1101 7D 125

~ = tilde 111 1110 7E 126

TABLE B.2 ASCII character codes

~B.4-

54:3:5

3271043002

doo; &'burs g9 pup J0SSadoud
1oubis aigpwwoabcs? gege bBuisn

JOHINOT NOUSHEBWID 9v1/0v3T

119A0GY 0}
25N X paxyiow
(Ayipgnodwod

sSpun uo

‘e O

28urs ybip mo)4 ay
si012D; bunoos

Burpuedap

10yop; Bunpds 2jgissod saypIPU ,_wu

05€9

- 83)0N

vondo

1edwop
D UONS NGWod

pUDWAP JID SS3IIXI

uonoindwos
widy poeysig
J{ 2

/ % —

] |

N

i0 po)
uabAxo

IADA
10U0d jan;

0se9 | 214 J14) 069
I
NOHVINGWCD NOILVINdWOD
1.l~. WiE1 HIV SS30X3 r _oive 13and _|z-2
1 £-9 -9 N \Xjﬂ i
7= u MOIJ IID %, MOy 1any _ fe-t
_ pasijpw ou PISIDWOU | _
A7, >:
| (x _ =)
| _ |
Sy WA _ _
onps Y-1
_ | _
_ _ !
| |- _
[LM oney]|
*/, PUDWIP vyi3ng */, pubwap
D pajiw; 1any pajuy
guk "
10}23)as] < | 1010938
cm;__ SSH ¢/, 4D 0} */, 12N} 0} _ moy
[nwn jeny vy ol
| | |
INOILYINGWO) NOIYLNWOD |
Ll . __ _|oNvW3G v anvW3a 3ndl .]
W3adlvy W301304
-1
14 id
*l, pubwep
uoNSNqWos)
Moly 1D "0} N

n Control

10

Block Di

1

-

C

.

Fig

f Lead/Lag Combust

iagram o

-C.1-

bl ol ey

APPENDIX C Application Program, documentation example

COMBUSTION CONTROL WITH CROSS-LIMITING [LEAD/LAG]

file ref PROJO01 Z00O&/A free memory 3646 bytes
13 September 1983 JSH)
AIRDEM (Airdem: Outputs limited air demand from the greater
of combustion demand and fuel-limit-to-air)
1 1 GETAN (input combustion demand)
6 4 GETAN (read fuel-limit-to--air)
5 2 GETAN (read bias)
- (subtract bias from fuel-limit-to-air)
MAX (select the greater)
6 1 SETAN {output limited air demand)
FUELDEM (Fuel demand: Outputs limited fuel demand from the
smaller of combustion demand and air-limit-to-fuel)
1 1 GETAN (input combustion demand)
6 3 GETAN (read air-limit-to-fuel)
5 3 GETAN (read bias)
+ (add bias to air-limit-to-fuel)
MIN {select the smaller)
6 2 SETAN {output limited fuel demand)
EXCSAIR (Excess Air: Outputs air setpoint from ailr demand,

as modified by excess air trim, and computes
normalised air flow)

1 (read nominal air/demand ratio)

1 4 GETAN (input ratio trim %)

100 (% normalising factor)

/ {divide by normalising factor)

+ {add normalised trim to nom. air/demand ratio)
1 25 GETPAR (get air flow High Range to normalise to %)
100

/ {(divide by 100)

* (multiply by nett ratio)

pup (save for later)

6 1 GETAN (read limited air demand)

* multiply by air/fuel ratio)

(

2 1 SETAN (output alir flow setpoint)

1 2 GETAN (input measured air flow)

SWAP (swap top two stack entries)

/ (divide measured flow by nett air demand ratio)
6 3 SETAN (output normalised air flow)

7
-C.2-

il ol By

Appendix C/Cont.

FUELRAT

: MAIN

(Fuel ratio: outputs fuel flow setpoint and computes

normalised fuel flow)

5 1 GETAN
100
1 25 GETPAR

/

*

bUP
6 2 GETAN
SWAP

2 2 SETAN
1 3 GETAN
*
6

4 SETAN

(read air/fuel ratio setpoint)

(get air flow High Range to normalise to %)
(divide into 100)

(multiply by air/fuel ratio)

(save for later)

(read limited fuel demand)

(swop top two stack entries)

(divide fuel demand by air/fuel ratio)
(output fuel flow setpoint)

(input measured fuel flow)

(multiply by air/fuel ratio)

(output normalised fuel flow)

(Main task scheduling loop; executed at power-up)

BEGIN
AIRDEM
FUELDEM
EXCSAIR
FUELRAT

REPEAT

(begin loop)

(task 1l: air demand computation)
(task 2: fuel demand computation)
(task 3: excess alr ratio trim)
(task 4 fuel ratio computation)

(loop back to BEGIN)

et

-C, 3~

APPFENDIX D

First Steps in Using a 6433

1.

Electrical Connections

Make connections as follows (refer to technical manual for

relevant housing)
Link OV Reference to OV Power
Connect Supply - 24V DC for the 7600 BIN housing
or ~ AC Mains for the 7900 Powered Sleeve

Switch Settings

Prior to plugging in module, set up internal switches S1 and
S2 (refer to 6433 facts card). In particular set up
Programming Terminal Baud rate according to position of

S1 no. 1:
S1 no. 1-OFF Baud Rate 300 (As for Hand held terminal)

81 no. 1-ON Baud Rate as set on S2 no. 2, 3, 4
(Normal Value 9600 Baud with S2 no. 2,3,4 all ON)

It may be convenient to leave Sl no. 1 OFF initially to allow
initial configuration via Hand held terminal.

Module Power Up

Plug in 6433 and switch on supply.

Observe that LEDs light on front panel. A previously
unprogrammed instrument will behave functionally like a 6432.

Note that if the unit is already programmed with a word MAIN
defined then program execution commences at power up.
Otherwise, 1if no program is running, the message HALTED
flashes on the Tag display. ’

6433 Configuration

Complete a SET-UP DATA SHEET according to required database
and use the hand held terminal or the programming terminal to
configure the 6433 accordingly, starting with Instrument

Parameters.

Note: Display of a Hardware error may indicate
incorrect setting of Board type parameters Sl to S8
Display of a Sumcheck Frror may indicate incompatible
High and Low ranges or Setpoint/Output limits. Reset
Channel Parameters 8T and Instrument Status word MD
by entering 0000 if necessary.

_D'l- | - amd gL SH-

APPENDIX D/Cont.

5.

Programming Mode

Connect Programming Terminal to front panel socket ensuring
that Baud Rate on the instrument 1is set correctly as

paragraph 2.

Note that the Programming Terminal must be set up for the
correct data format etc. Alsoc the line length card and tab
character (to be used as a forward space in editing) must be
set correctly in the 6433. Usually the default values will
be adequate.

Check emulation of the hand held terminal by entering 2 for
Command mode as indicated by ?7CMD.

All entries are terminated by RETURN.

Enter CTRL P to select Programming Mode. Note that command
mode may be re-entered using CTRL Q. Sign on as requested,
entering either a user name (7 characters including spaces)
with a previously unprogrammed instrument or the 3 digit
security code 1if a user name is already programmed. Note
that instruments supplied pre-programmed by TCS have the user
name TCS (preceded by a space to make up to 7 characters) for
which the security code is 404. Hit the Space Bar to change

name if required; otherwise press RETURN. The 6433 will then

print available user memory.

Check Fixed Dictionary words by entering FWORDS
Check User Dictionary words by entering UWORDS

Fxecuting Forth Statements in Immediate Mode

mry the features of the FORTH interpreter by entering simple
arithmetic statements followed by a dot so as to print the
result. Note that all operators must be separated by a

space.
F.g. 50 2 / 40 * 1 - . RETURN

(Prints the result of the calculation [(50/2) x 40] -1
i.e. 999)

3 ." COME IN No " . RETURN
(Prints COME IN No 3)

Remember that FORTH statements are entered onto the stack in
Reverse Polish Format. All entries must be separated by a
space.

- pd PO "=

-D.2-

APPENDIX D/Cont.

7'

10.

Editing a FORTH Word

A word may be listed by entering a colon followed by a space
and then the word name.

Editing may then proceed in an obvious way using BACKSPACE
and DELETE keys. Usually the TAB key is used for forward
space. ;

Entering a Simple Program

Try defining a user word by entering a colon followed by a
space and then the word name and then a set of operations,
always terminated by a space and a semi-colon. The preceding
numerical example may be coded as a FORTH word TESTI

: TEST1 50 2 * 40 * 1 - . ;

The last word entered in the User Dictionary may be erased by
typing FORGET.

Listing a Program

The complete program may be listed using the ULIST command,
using the space bar to page through the listing.

Running a Program

To execute TEST1, simply type:
TEST1 RETURN .

To. execute TEST1 continuously in 1immediate mode try a
continuous loop ‘

BEGIN TEST1 NL REPEAT-

Execution may be terminated by pressing ESCAPE
Now add a second word TEST2Z :

: TEST2 3 ." COME IN No" . NL ;

Try a single execution, then create a new word RUN to run
both TEST1 and TEST2 consecutively.

RUN BEGIN TEST1 NL TEST2 REPEAT

-D. -

- ol OERLA W

APPENDIX D/Cont.

ll.

12.

Fixing a Program

The program may be fixed in ROM using the STORE command. Try
this but first check the User Dictionary by entering UWORDS.

Now enter STORE. The program will now be retained even when
the instrument is unpowered.

Now erase the User Dictionary by entering NEW or by using the
FORGET command as many times as necessary.

UWORDS should now show an émpty dictionary.

If the instrument supply is now removed and re-connected the
original program will be reloaded from ROM to RAM. This may
be checked using UWORDS.

Execution and Power UD

Automatic execution at power up may be achieved by
incorporating the program within the word MAIN. If a MAIN
word has been defined then the instrument will come up in
command mode, allowing access via the hand held terminal.
Otherwise it will <come up in either command or programming
mode according to the previously selected mode.

T e L LY

-D.4-

APPENDIX E

6433 PROGRAMMER REFERENCE LIST

Stack inputs and outputs are shown with top of stack on right,

Operand
number,

key:

n,nl represents a 32 bit signal floating point

Specific types are distinguished as follows:

Bn
Cn
Pn
vn
An
Rn
n
£

C

ARITHMETIC

1 +

/
ABS
MAX

MIN
MINUS
SQR
SQRT
SIN

Cos

ATAN
ATAN2

E
EXP
LN
PI
INT

LOGICAL

AND
OR

XOR
NOT

COMPARISON

>
<

0>
o<

Input/Output Block Number
Input/Output Channel Numbers
Parameter Number

Variable Number

Argument Number

Result Number

Timer Number

Boolean Flag

ASCII Characters

-E.1l-

APPENDIX E/Cont.

INPUT/OUTPUT

GETAN
SETAN
GETDIG
SETDIG
GETPAR
SETPAR

GLOBAL VARIABLE

GETVAR
SETVAR
DIFVAR
SUMVAR

LOCAL VARIABLE

GETARG
SETARG
GETRES
SETRES

TIMER

GETTIM
SETTIM
+TIM

STACK MANIPULATION

DROP
bUP
OVER
ROT
SWAP
ARG
RES

TERMINAL INPUT/OUTPUT

KEY
NUMBER
EMIT

SPACE
CR
LF
BS
NL

-Enz'-

APPENDIX E/Cont.

DISPLAY CONTROL

GETBCN
SETBCN
TAG."

CONTROL STRUCTURES

DO...LOOP
I

LEAVE
DO...+LOOP

BEGIN...REPEAT
BEGIN...UNTIL
IF...ENDIF
ELSE ,
CASE...ENDCASE
OF...ENDOF
ELSOF. ..ENDOF

SYSTEM UTILITIES

WINDOW
FWORDS
UWORDS
ULIST
FORGET
INSERT
NEW
STORE
RECALL
CLEAN
TRA-ON
TRA-OFF

PROGRAM CREATION

MAIN
ERROR

LINE EDITOR

BACKSPACE
TAB
DELETE

-Ea3"'

E4das

APPFNDIX E/Cont.

OPERATING MODES

DC1 (CTRL Q)

Command Mode

??CMD ¢ 7
Scroll : W
Fnter + + L
Enter - : M

Programming Mode
Program Execution

DLE (CTRL P)

Word MAIN is executed at power up.
Word ERROR is executed on trap to
Run-time error

ESCAPE terminates program execution or
Edit mode and resets error condition.

e

Termination

PROGRAMMING TERMINAL UTILITIES

CHARACTER griniTy
-
DC1 (CTRL Q) Command Mode Operating
DLE (CTRL P) Programming Mode Modes
FSCAPE Terminate execution
STX (CTRI. B) - Initiate Load
FETX (CTRIL C) Terminate
D
FNO (CTRL E) Initiate Save
STX (CTRI. B) Start of Text from
FTB (CTRL W) End of Block 6433
ETX {CTRL C) Fnd of Text
-E.4-

ERROR MESSAGES

Matching pairs

Compiler output buffer overflow
Terminal input buffer overflow
Data stack overflow

Data stack underflow

Attempting to edit a FIXED word
I/0 board type

LOCAL VARIABLE argument out of range
TIMER argument out of range
ARG/RES argument out of range
I/0 Bn out of range

I/0 Cn out or range

Undefined or forward referenced word
I/0 Pn argument out of range
User dictionary empty

Memory corruption

VARIABLE argument out of range
1/0 Write protected

I/0 Board hardware

User memory not available
Missing ARG statement

Illegal word use

Word sumcheck

_E.S....

re

"Z 40 L'LHS

1HS vivadn 13s Q11 SWALSAS P
HoSSao0Hd NSIS | = tounos (=85 T,
F719VININVHODQHd £€€1V9 TINENUNL
s8/8/ 1] 1]/z80 LNI
TIODLNOY ‘ON VIH3S | a3xd3aHD
NOILSABWOD HVT/ Q3 1 /8899 nss | 9wz N
NOILLONNA 11 ALILN3QI INIWNHLSN | a3 idwod]| aiva ['ssi

3LIYM 7 dv3Y 4O AINO av3H =

]

¢ L33HS NO G3NNILNOD

gy SWHYIV DIHOLSIH .
7S IdAL QUYOE + NYIS T3INNVHI ¥ %0018
£V SWHYY DI¥OLSIH
£S 3dAL QHVOE + NVIS TINNVHI £ %0018
v SWHYTY JIHOLSIH
zs IdAL OHVOE + NVIS TINNVHI Z %018
1y SWHVTY D1H0LSIH
IS 3dAL QYVOB + NVIS T3NNVHD L %2019
sunn | (SHYHOY) |ginomanw NOILONNS HILINVUVL 3dAL
ANTVA H3LINVHYI
SHALIANWVHYC LNIFWNYHLSNI
g
L
9
S
(AStiac)ns ¢ 9
Nne -~ | €
NS @ NOYV - O NS~ 1 4
nsijo Ast/o AQI~O CIET:) 1
TIN5 018 [a| € w0018 [aay] zwoona [N L 10078 TINNYHI
Loo .Zt.ui 81| oa vuma | 91 [1no 3anomvey] 8o w1 yavorvny] 0o (3dA1/3000 0YVOE
SPAAL DS

(tHoiy) s H?

9 123135 Gin_3sve

. 0 .u?z.v,.”m
HOLIMS SNLVIS NO mmm 5

HOLIMS SNLVLS

(£437) ts

STINNVHD LNdLNO / LNdNI 1v3Y : NOILONNA gdvod

ENERAE] AV1dsia byl
MRS 00€ HIvg0nve TWNINgSL— —
AHVNIE 300W _1090108d

% NO | % 430 | NOTLINNAS

NOILLD313S 3dOW

IANEVIINddV SV 313130 *

SWINOD 1Viu3s

SHILANVHYd TINNVHD HOSSID0Hd TUYNDIS €€b9

QAL SINSLSAS
TOEHANOD
IIN8NGNA

=Eod-

AWNO av3ay =[O

gy

iy

:14

sy

144

134

t4 4

Wawvy o7 73nd4 Wiy | 1304 o go0

Qo000 (%72

50/50 WY/ WY
SNUVAS 910 {ONIASTW WY

1n0/%E 910 ¥IN 1z 1t
NOLLONNI

A0dLNG £ ININT TWLIDI0 HOA 31BYIIIddY LON

LS
SMwiS 308 N3

I v uvho ovi TanwvHa | U v

QNN

YH

] H
d0/N T 390V FONV?

S NHD
P~ 1 %0078

400 "YIQ 3dAL quvoR

| 3000 ayvoa

8e

18

9t

st

re

tE

mwu.wua.wwwum._m:u\ / ™oy | 7303

ce

G 38053737 I / ™Mo~ 21 ©2aa

ococo 1e

50/8G HYinY
e o0 vIN L2 4 sawis gia {annisvwwiv

NOILLONNA

ANdNT VL1910 804 318VINddY 10N

1S
SNLYIS 320718 NI

At yv

n Y HYA INI

YVHI vl TINNVHD

v a H
dO/WT FoNV NV

s NHO
4)%3078

snives

91 3daL ouvos

O] 3002 auvor

8e

\ _/

iz

\/

[:14

sz

Y
A

re

[\

€2

WvwEqEnd | fAfgN| Wac]™ 1503 \ /

000z | 00QQO} QooT.

QooQ 22

QNYREQ Y z\mz [YEL o

BELQ | Qacal 669G

ccoo| iz

S v
ina i i Lt SNLv] OISV

NOLONNA

VIiiddV 10N

NO

v

HYHD OvL TIMVWYHD 99 M

y
Lnoms. v | SsLNn YA FNISd | IO

OH 1 PHL Y1 uh
O/ HOH | FINvH w01 | 30MYH HAIH

NHO

1S
s iy | £ #0078

LQO *0NY 34dA1 ayvos

&0 3000 auvos

:11

L

13

, ‘6t

00co

WraL owval o/ Wizl Lva

co-o)|og~0l} 0001

QooZ| 4y

1074 In | H AN M3 T30 {hoo aooz| ccor| aeozZ] oo €1
ERER- TR R S T Fl - YR aocac 6666|0009 G¢GG| Tooa| 4
EWHIT NoILSNBIO? | O/ | AT | 8ioD e 66°GR] 0000 $G G668 QoozZ] |
" ANGT™YI0 > 1¥4 b m::&ﬁmn oz.gm«xq LNdLNQ ¢ LNINT T¥] 1 1ddV Jont mESmm NO
NOILONNZ NHO
. S67A Z
TRAUNG WY | SLen UTHD el TINNTHD wen dwiss | stoinog v uEJﬂw«.uw.x_ 20t oy ~ a0V Horm | savab o | 7400718

NI Y 3dALquvos

© O 3000 ayvos

FUNCTION STATE
SCROLL STYLE JUMP
AUTO REPEAT QN
AUTO WRAPAROGUND | ON
NEW LINE OFF
INTERLACE OFF
ANSI| YES

AUTO X ON-XOFF | OFF

PARITY { ENABLEO]JEVEN
BITS / CHAR 7

PROGRAMMING TERMINAL SET-UP

FUNCTION

LINE LENGTH

[VALUE] 64 33 WORD]VALUE
&6 [winDow [792

BAUD RATE

[EXA)

DEC VT100 SETUP:

1 2 3 5
T T101 T_O_E__io:____e_;

BOARD CODE OF [BOARD TYPE AN. 00T OPERATOR. SET
BLOCK / gzwmsam :_mzxa”zmm Si_.nnzmm :.n-_».bﬁmov —cﬁ»ﬁmou N?mm.wczzo P o CHANNEL TAG CHAR TS an IO FUNCTION
mu.rz mmﬁ«:m NOT APPLICABTEPOR—PIGLIAL_LNPUT § OUTPUT >E>mx.zm um.\;:_m ' 2T o
51 |Zzoco |99 |co.00 |lo.00 0000 osoolA -F |BIAS | %6 [Nz LM ToFoR Bins
52 |2000 |9995 loc.cclic.co o000 / \ os.co | F-A |BIAS %0 lFueLtiiTo A Bips
[= /,\ __ _
54
i 55 >
i — /T
— I\
|
BOARD ogm'ﬁ BOARD TYPE AN. I DERWED VALVES
BLOCK 7 | CPALSTATUS | HGH RANGE | LoW FANGE [ALTGE [Loy e [AU ROUTG FRRETIR | GaamEL TG ONAR oars | Ay e oenon
nnzb. (SIATUS| oY APPLICABLE TOR INPUT f OVTPUT MHASIKING | DT SIS 'e 2t DG~ QUT
61 |Zooe |9D:88 |00-c0 |95.99 joo-0o |220° ae. [DEM%] Yo |LimTed AR DEHAND
62 |2000 |3339 |00-00 |93.99 |oo-00 |O002 FuEL |DEM Pl o lmMrEd FUELDEMMD
63 |zooo |29.98 |0o-00 |93.99 |oo.oo 0000 NORHM |AIR Yo |HogrHaieED M2 FLow
64 |2000 |a9.a9 |0c000[2935 |e0-00 |OCOO No’M |FUEL Yo | NorsaLID PUEL FLOWS
65
66
67
68
BOARD CODE BOARD TYPE
BLOCK 7 | CHLS™Y% HIGH RANGE LoW RANGE HiGH aLwioP f LOW AL 0P ALW ROUTING | PRINE A7 | cHANNEL TAG CHAR “uts | an mwrour | NCTION
n%b_ BLOCK STATUS| o7 APPLICABLE FOR DIGITAL puTrouTPuT | ALMMASKING) DIE STHUS " 2T 1A DIG IN1OUT
kal
72
73
74
75
76
77
78
BOARD CODE BOARD TYPE
SLOCK 7 | CRALSTATE | RARGE _ T e oW ALWIOP [ALt ROUTING PARE AR | cuameL a0 owan | uwits | au wmrout o eon
nmu‘ BLOCKSIATUS| woT APPLICABLE FOR DIGITAL INPUT /.OUTPUT ALpMASKING L Ty 27 NIA Di6 INFOUT
8t]
82
83
84 .
85
86
87
as
()= READ ONLY
res Y ROL Bl | o433 SIGNAL PROCESSOR CHANNEL PARAMETERS
- =d SySTEMS LTD

STOP/ BITS 1
BOARD FUNCTION : INTERNAL 'PSEUDO’ CHANNELS
BOARD CODE/TYPE| | | |
CHANNEL BLOCK 5 cHAN | BLOCK 6 cuan] plock 7 |fHAVE BLOCK 8 L
1
2
3
4
5
6
7
8
INSTRUMENT PARAMETERS
PARAMETER VALUE
TYPE PARAMETER FUNCTION MNEMONIC| (4cpars) | UNITS
8LOCK 5 CHANNEL SCAN BOARD TYPE S5
HISTORIC ALARMS AS
BLOCK & CHANNEL SCAN BOARD TYPE S 6
HISTORIC ALARMS A6
BLOCK 7 CHANNEL SCAN _ BOARD TYPE S 7
HISTORIC ALARMS AT
BLOCK 8 CHANNEL SCAN BOARD TYPE S8
HISTORIC ALARMS A8
MONITOR ONLY | SWITCH BANK S18& $2 SETTINGS SW
6433 OPERATING STATUS MD
= READ ONLY OR READ / WRITE
iSS.| DATE |COMPILED | PROGRAM FILE REF, FUNCTION
A 25184 | SSH 2. 006 LEND /LAG COMBUSTION
CHECKED
CONTR O
TURNBULL 6433 PROGRAMMABLE
v ;wl g ™2 ~ONTROL SIGNAL PROCESSOR
e el GYSTEMS LTD SET UP DATA SHT

SHT.2 OF 2.

i PROGRAMMING TERMINAL SET-UP
SOARD Cope BoARDTYPE FUNCTION STATE FUNCTION [vaLuel6433 WORD [VALUE]
BLOCK / | CHATATLS | MOMREE | MO R [MR A T MARIM | TRV g7 | chawmL mascuar | WS | aw oot | o SCROLL STYLE JUMP LINE LENGTH I wiNDow | |
N [PLoS ATS] wor apeLicaBLE FoR Diomaw iNeuT s ouTPuT | ALk At 016 Sts | v 2 N Sk AT WRA AR T8 BAPARGUND |] [EAUD FATE I
51 NEW LINE OFF
INTERLACE OFF
52 LANSI T YES
AUTO X ON-X OFF | OFF DEC VT100 SETUP:
p [PARITY [ENABLED]IEVER 1 2 3 4
S/ CHA 7
b S0P/ BITS d T T[T Lo [T Tele]l G TaTeq)
55 -
56
- BOARD FUNCTION : INTERNAL 'PSEUDO’ CHANNELS
58
BOARD CODE/TYPE[[
BOARD CODE BOARD TYPE CHAN CHAN CHAN CHAN
THAN STATUS | HIGH RANGE | LOW RANGE | HIGH ALM/OP | LOW ALM/OP | ALM ROUTING | PRIME VAR CHANNEL TAG CHAR ts | av oo CHANNEL BLOCK 5 AcTive| BLOCK 6 AcTive] BLOCK 7 Active] BLOCK 8 ACTIVE
BLOCK/ ST HR LR HA/HO LAILO AR - PVI OP FUNCTION 1
00:-“‘ BLOCKSTATUS| o7 APPLICABLE FOR DIGITAL INPUT 1 QUTPUT ALM MASKING | OIG STATUS 1T 27 NIA 016 IN/ OUT n
61
62 3
63 4
64 5
65 6
66 7
67 8
68
—— p— INSTRUMENT PARAMETERS
m..%—mh~ CHAN STATUS| HIGH RANGE [LOW RANGE Enﬂmon LOW ALNI 0P T ALWROUTNG PRINE VAR CHANNEL TAG CHAR uNITS AN INJOUT FUNCTION
N BLOCKSTATUS| no7 APPLICABLE FOR DIGITAL INPUT/ ouTPUT | ALM MASKING] DIC STATUS T 2T NIA 016 IN7OUT PARAMETER VALUE
- ST TYPE PARAMETER FUNCTION MNEMONIC (4 CHARS) UNITS
72
73
— BLOCK 5 CHANNEL SCAN BOARD TYPE S5
s . HISTORIC ALARMS AS
76 BLOCK 6 CHANNEL SCAN BOARD TYPE S6
77 HISTORIC ALARMS A B
78 BLOCK 7 CHANNEL SCAN BOARD TYPE S7
HISTORIC ALARMS A7
BOARD cope BOARD TYPE —— - BLOCK 8 CHANNEL SCAN BOARD TYPE S8
m_.o.muh\ Qszmmw;m z_mxxnmzam roirmm%m :_mhhr...&ov ra&»wﬂmcv »Cnfo Bvion CHANNEL TAG CHAR UNITS AN IN/OU FUNCTION HISTORIC ALARMS)
muz BLOCKSTATUS| NOT APPLICABLE FOR DIGITAL INPUT / QUTPUT ALMMASKING| 010 STATUS vt 2T NiA 0IG INIOUT
MONITOR ONLY SWITCH BANK S1& S2 SETTINGS SW
81
v 6433 OPERATING STATUS MD
= = READ ONLY OR READ / WRITE
84
Bl I 1S.| DATE [compILED | PROGRAM FILE REF, FUNCTION
86
87 E— CHECKED
88
=Rl
D=TEe oy TURNBULL 6433 PROGRAMMABLE
TURNBULL P e CoNTROL SIGNAL PROCESSOR
“pP =3 conTROL E 6433 SIGNAL PROCESSOR CHANNEL PARAMETERS .._... - 0
rss SYSTEMS LTD - — SYSTEMS LTD SET UP DATA SHT

SHT. 2 0F 2.

BOARD CODE

BOARD TYPE

BLOCK /
CHN
CN

CHAN STATUS
5T

HIGH RANGE | LOW RANGE | HIGH ALM/OP|
HR LR

HA/HO

LAILO

LOWALM! OP

ALM ROUTING
| AR/ -

PRIME VAR
PVIOP

CHANNEL TAG CHAR

UNITS,

AN IN/OUT

BLOCK STATUS|
ST

‘NOT APPLICABLE FOR DIGITAL INPUT / OUTPUT

ALM MASKING
AMIAM

DIG STATUS
DS/DS

17 27

NIA

,{ DIG IN/ OUT

FUNCTION

11

12

13

14

15

16

17

18

SERIAL COMMS

MODE SELECTION

BOARD CODE

BOARD TYPE

BLOCK/
CHN
CN

CHAN STATUS
ST

HIGH RANGE | LOW RANGE
HR LR

HIGH ALM/OP
HATHO

LAILO

LOW ALM/OP

ALM ROUTING
AR/ -

PRIME VAR
PVIOP

CHANNEL TAG CHAR

UNITS

AN INJOUT

BLOCK STATUS
ST

NOT APPLICABLE FOR DIGITAL INPUT

10UTPUT

ALM MASKING
AM/AM

0IG STATUS
0S/0s

T 27

0IG IN/ OUT

FUNCTION

21

22

23

24

25

26

27

28

BOARD CODE

BOARD TYPE

BLOCK /
CHN
CN

CHAN STATUS|
ST

HIGH RANGE | LOW RANGE
HR LR

HIGH ALM/OP
HAIHQ

LOW ALM/OP
LA/LO

ALM ROUTING
AR/ -

PRIME VAR
PV /0P

CHANNEL TAG CHAR

UNITS,

AN INJOUT

BLOCK STATUS|
ST

NOT APPLICABLE FOR DIGITAL INPUT

10UTPUT

ALM MASKING|
AMIAM

DIG STATUS
DS/0S

1T 27T

DIG IN/OUT

FUNCTION

31

32

33

34

35

36

37

38

BOARD CODE

BOARD TYPE

BLOCK /
CHN
CN

CHAN STATUS
ST

HIGH RANGE | LOW RANGE
HR LR

HIGH ALMIOP
HAIHO

LOW ALM/OP
LAILO

ALM ROUTING
AR/

PRIME VAR
PVIOP

CHANNEL TAG CHAR

UNITS

AN IN/OUT

BLOCK STATUS
ST

NOT APPLICABLE FOR DIGITAL INPUT/

ourPuT

ALMMASKING
AM/AM

0IG STATUS
.0S/Ds

1T 27

DIG IN/QUT

FUNCTION

41

42

43

44

45

46

47

48

1= READ ONLY

TOD

TURNBULL
CONTROL

SYSTEMS LTD

6433 SIGNAL PROCESSOR CHANNEL PARAMETERS

* DELETE AS APPLICABLE FUNCTION OFF ¥ JON ¥
PROTOCQL MODE | ASCII BINARY
lllllllllll —— e — — — —4 TERMINAL BAUD RA 300 SW.SEL,
TAG_DISPLAY DISABLE{ ENABLE
BASE UID SELECT] . 0 * 8
STATUS SWITCH =13 ON status swiTcH
S1 (LEFT) mmmm ofe 52 RIGHT)
BOARD FUNCTION : REAL INPUT/ OUTPUT CHANNELS
BOARD CODE/TYPE| | |
CHANNEL BLOCK 1 Shatel BLock 2 SOAN| BLOCK 3 [fHAN T BLOCK 4 |GHAN
1
2
3
4
5
6
7
8
INSTRUMENT PARAMETERS
PARAMETER VALUE
TYPE PARAMETER FUNCTION MNEMONIC| (4cHars) | UNITS
BLOCK 1 CHANNEL SCAN + BOARD TYPE S o__._
HISTORIC ALARMS . Al
BLOCK 2 CHANNEL SCAN + BOARD TYPE S2 o___
HISTORIC ALARMS A2
BLOCK 3 CHANNEL SCAN + BOARD TYPE s3 o___
HISTORIC ALARMS A3 .
BLOCK 4 CHANNEL SCAN + BOARD TYPE S4 o___
HISTORIC ALARMS A
CONTINUED ON SHEET 2
= READ ONLY OR READ / WRITE
1S8S. DATE COMPILED | INSTRUMENT I[DENTITY 11 FUNCTION
6433/1
CHECKED [SERIAL NO.
- - TURNBULL 6433 PROGRAMMABLE
.._L ——= CONTROL m- SIGNAL PROCESSOR
) SYSTEMS LTD SET UP DATA SHT

QHT 1 NF 2

