EUROTHERM
PROCESS
AUTOMATION

PROGRAMMABLE INSTRUMENTS
PROCRAMMING MANUAL

et

Prepared by: DP/RWP Issue D

foimmieilns

January 1986

EURDTHERM PROCESS AUTOMATION EIMITED

; SOUTHDOWNVIEW WAY, WORTHING, W SHUSSEX 5N14 8NN TELEPHOME 0903 205277 FAX:Q903 233902 TLLEX:87437
; BRECTORS: | L LECRNARD MEe #ab chamuan, [ ] FAGE] wenegiug, MK FLHOTT ROOM CA
o BREW CEao, 2% WYl BS7iFusi CFrg MIEFE mligt
i Registere ar: 11807 58 Eagland. Registered alfice: leonardsles. lower Beeding. Horsham, Wesl Sussex RH13 oFP




Turnbull Control Systems Ltd. reserves the right to make
specification changes at any time without notice, in
order to improve design and supply the best equipment
possible,

Turnbull  Control Systems Ltd. cannot assume  any
responsibility for any circuits or system schematics
shown. All applications information contained herein is
intended solely £for general guidance and use of
information for users' specific applications is entirely
at the users own risk.




PROGRAMMABLE INSTRUMENTS 6433, 6356/66 and 6445

PROGRAMMING MANUAL

CONTENTS

* EE R KRR

» 1. GENERAL INTRODUCTION
,% 1.1 The Manusal
Lo 2 The Language
1.3 The Instruments

I aR)

2. SOFTWARE STRUCTURE

2.1 6433 functional Overview
2.2 £356/66 Functional Overview
2.3 6445 Microsupervisor

2.4 Programming Considerations
2.5 Program Memory

2.6 Selecting a Program

3. GETTING STARTED
2 3.1 Connecting a Terminal
3.2 Typing Conventions
3.3 Understanding the Stack
3.4 Keep Note of the Stack

4, PROGRAMMING THE INSTRUMENT
4.1 Introduction
4.2 First Steps
4.2.1 Logging-on
4.2.2 Logging-off
4.2.3 Escape Key
4.2.4 Single Line Editor
% 4.2.5 Have a Go
i 4.2.6 Summary

4.3 Interaction and the Interpreter

- Arithmetic Calculatigns
o342 Try Some Arithmetic
. - Summary

= = -

£
:
H
o)

iadababaiadsieis



4.6

4.8

Terminal Input Output Operations

.1 Numbers and Print Routines
.2 Character Qutput
<3 Summary

b - - -
5 &

Writing a Program

4,5.1 Creating a Word

4.5.2 Editing a Waord

4.5.3 Dictionary Management Words
4.5.4 Summary

Stack Manipulations

4.6.1 Local Variables
4.6.2 Summary
More Arithmetic and Trigonometric Words

Logical Words

4.8.1 Examples

4,8.2 Summary

Comparison Words

Variable and Timer Words

4.10.1 Variables

4,10.2 Timers

4.10.3 Summary

Terminal Input

Conditional Branches

4.12.1 IF .., ELSE ... ENBIF Structures
4.12.2 CASE ... ENDCASE Structures
4.12.% Summary

Loop Structures

4,13.1 Definite Loops

4.13.2 Indefinite Loops

4.13.3 Summary

Instrument Specific Words

4.14.)1 Special 6433 Words
4.14.2 Summary of Special 64332 Words




sy
i
3
H

g emides

£ )
;
3
&
1t

ik

Ao saniv

4.14.3 Special Advanced Controller Words

4.14.4 Summary of Special Advanced Controller Words
4.14.5 Special Microsupervisor Words

4.14.6 Summary of Special Microsupervisor Words

4.15 Debugging Facilities

4,16 Reserved Words
4.16.1 The 6433 MAIN Program
4.16.2 Advanced Controller Programs
4.16.3 6445 Microsupervisor
4.16.4 The ERROR Pragram

4.17 Error Messages

5. PROGRAMMING TERMINAL UTILITIES

Appendices

Appendix 1
Appendix 2

Appendix 3

Interconnection Cables
Binary Protocol Parameter Numbers for the 6433

The Functional Blocks for the Advanced Controller






3
2
3
o
W]

GENER/AL INTRODUCTION

The Manual

This manual introduces the programming techniques associated with
the TCS System 6000 programmable instruments:

6433 Programmable Signal Processor
6356/66 Programmable Advanced Controller

The text assumes that the reader has a working knowledge of the
System 6000 intelligent instruments, specifically

6432 Signal Processor
6350/60 Process Controller

Be fore attempting to create programs for the programmable
instruments, it is recommended that the reader refers to the 6432,
6350/60 Technical Manuals.

The Programming Manual is written in two sections:-

Firstly - A tutorial to allow a beginner to start to
perform simple routines.

Secondly - A reference section to provide the more

experienced programmer with a check list of
the instrument functions.

The Langquage

The System 6000 programmable instruments are programmed in a version
of the "FORTH" #* language developed by TCS specifically for use with
these instruments. :

TCS FORTH differs from other standard FORTH implementation in that:-

(a) It is considerably simpler and does not require
features such as disk file I/0.

(b) 1t handles numeric data exclusively in floating
point format, thus removing the need for the
programmer to consider binary point positioning.

The manual describes the T7TCS FORTH implementation and provides
examples relating to the wuse of the language. Appendices show
examples of a documented applications program for a typical process
control problem,

* FORTH is the registered trademark of Forth Inc.



Readers who already have programming experience (not necessarily in
FORTH) should find the manual sufficient. Readers who have no
previous software knowledge will probably find it beneficial to
refer to a standard introductory text on FORTH. This will provide
an introduction to the programming concepts of the language making
the implementation described in this manual more meaningful.

The Instruments

The programmable instruments are based on the hardware of the
existing configurable instruments as follows:-

6433 based on 6432 Signal Processor hardware
6356/66 based on 6350/60 Single Loop Process Controller

6445 Microsupervisor - an extension of the 6433 Signal
Processor

The programmable instruments include all of the features of the
configurable instruments plus the TCS FORTH package that allows
arithmetic and boolean computation and display assignment.

The programmable units extend the monitoring and control facilities
of the configurable instruments by providing features necessary for
batch and sequence contrel and interlocks. As well as "analogue"
calculation and logical manipulation, timing and counting functions
suitable for sequencing applications are included. Timing functions
are carried out to a precision of 2 milliseconds under control of a
real-time clock.

The input/output capability of the instruments is as follows:-

6433 - 4 blocks of 8 channels where the blocks may be
analogue or digital inputs or outputs.

6356/ 3 analogue inputs, 3 analogue outputs,
6366 - 8 digital inputs, 8 digitals outputs.

6445 - 5 serial lines, 8 digital inputs,
8 digital outputs.

The 6433 provides an additional 4 blocks of 8 pseudo channels which
may be used for internal derived wvariables. Thse are accessible
from the front panel and via the hand-held programming terminal or
via the serial 1link in the same way as the real inmput/output
channels, and would typically be used to display the results of
calculations, status and to set internal constants.

The 6356/66 include 8 constants plus two 8 bit status words that may
be used to store intermediate values as above. The constants may be
assigned to the front panel display and are accessible via the
hand-held programming terminal or the serial link.

sl taii

Uaida i

Hehiiiuiiaiaid



e
i
i)

i
1
R

Programs are developed in RAM using an RS5232 "Teletype" compatible
device such as a VDU plugged into the front panel socket.

A program developed in RAM can be "fixed" 1into ROM from the
programming device. The program is, however, always run in RAM and
this allows programs to be loaded in RAM, edited and then debugged

before the original program is replaced.

Full program edit and load/save facilities may be obtained using the
BBC 'B' or Epson PX8 computers.



[

1

R5¢22 SUPERVISORY

PARAMETER MEMORY
{BATTERY BACHED RAM)

o ?ﬁ'ﬁ"! SERIAL DATA LINK
b
COMMUNICATIONS £y % Lo
%
? RS 111
TASAI Igerseta *;
IHPUT 7 QUTPUT i |FRONT
SCANHING 1 | PANEL
I + 1 m? %
BASIC 6432 FACILITIES (B ;leu TOFSJ: il
[ersren  P— | [ Bt
MAINTENANCE |
ROUTINES L_ e, e L
T} HAND - HELD
[ \ CONFIGLRATION
TERMINAL
jReaL-Te 2mSec.
MULTi- TASHING <4 CLOCK
EXECUTIVE
L I 2 1 BACKGROUND
. HER S5 T= ! HIGH LEVEL
! |ParaMErERS H fu‘r"cck%:f:‘rsn
PLANT INPUT/QUTPUT \ e ¢
=i a1 1
ARALOGUE HPUTS i ANINPUT# )
: (1.1 HEY v Voo
o W ke BLOCK 1 H PROGAAMMNG
nt _AHALﬁ?U’E oUTPUT G AN, CUTPUT® ! ‘ TERMINAL
.. (8} - 1 1
R A H ]
Folick O ' STACK FIXED WORDS
UIGITJJ.‘ a;nmts DIG. NPUT® H DICTIONARY
L H
e hen Y IelgeRe . [KERKEL
& DIGITAL QUTPUTS ', DIG OUTPYT® INSTRUCTIONS)
W oY - JEA
2 : 4
PSEUDO INPUT/QUTPUT 1 [Haocxs .
ANA'LD%I,E HONITORING ¥ ] AuEur !
H '
i 10CK 6 -—
operaton setpomts | | EcEE e | r------%—- 1
L ! : i [user woros 1 4
1 ocK 7 i | DICTIONARY 1
STATUS MONITORING ! Hmpmg ! |tappLicaTiONS | |
! ' PROGRAM) H
OPERATOR ConTRoL | A0S pletran I
) : DIG, DUTAUT ] !
3 1
E DATA BASE { E
1]
] 4 1
¢t [warueces 1 €K EEPAOM H
1 t6ed PROGRAM MEMCRY
' [Twers (RAMZEEPROM)
1 {16)
1
R —— 3

6433 PROGRAMMABLE SIGNAL PROCESSOR
FUNCTIONAL OVERVIEW

*NOTE: ANALOGUE AND DIGITAL INPUT/OUTPUT CARDS
ARE SHOWN IN ATYPICAL CONFIGURATION:
ANY COMBINATION MAY BE SPECIFIED.

Fig 2.1

Sanliaseieit i

Gigiasipistinii

stasads




R
[

e eialdid

1
{

SOFTWARE STRUCTURE

6433 Functional COverview

The heart of the 6433 is the data base as shown in the functional
overview of Fig. 2.1. This holds ¢the instrument parameters and
channel parameters for the 4 blocks of 8 real input/output
channels as for the 6432. 1In addition it holds the parameters for
the 4 blocks of 8 intermnal or pseudo channels.

This data base 1is scanned continuously and up-dated with the
values of real inputs or ccomputer wvalues; output blocks are
up-dated with new wvalues if a —change has taken place to the
relevant wvalues in the data base. All values are available for
display on the front panel under the control of the pushbuttons.

As in the 6432 instrument, wvalues may also be accessed via the
data communications task. In normal on-line operation this
services the RS422 serial 1link. However, plugging in a
programming terminal disables the R5422 link and transfers control
to the RS232 front panel socket whieh may be used for either the
hand-held terminal or a teletype compatible console such as a VDU.

Also held in the data base are current values of the 64 variables
and 16 timers. Variables are stored in 32 bit floating point
format. Timer values are stored as 32 bit numbers with 1 bit
corresponding to 2 wmilliseconds, giving a range of + 4,2%4,950
secs. or about 7 weeks.

User programs are written in a high 1level interpretive language
based on a version of FORTH. Program statements are called
"Words" and these loosely correspond to sub-routines. A kernel
set of the most common functions are resident in ROM in the "Fixed
Word Dictionary".

These comprise the common arithmetic and boolean operators,
input/output routines, etc. The user then builds up a program by
creating a hierarchy of user words in which both user-created and
fixed dictionary words may be nested and strung together. The
user words are added to the "User Word Dicticnary".

Program words operate on one or more values on a data “T"stack".
New values are put on to the top of the stack and push daown old
values. They are picked off on a first-in last-out basis so that
program statements operate in a "Reverse Polish" format.

The frent panel R5232 socket supports two terminal modes. The
first is Command Mode which provides the normal access to
configuration parameters via 2 character mnemonics. The second is
Frogramming Mode which provides access tao the FORTH editor for
entering and modifying programs. This mode 1is protected by a
security number associated with a user name.



6356/6366 Programmable Advanced Controller Functional Overview

RLAL 15
MALTE- T250HG ] éf&sc':
EAECUTIVE -
l 2532 SUPERTILLAY &
Tagx 1 arRIaL s DATS LK e
b DAL =" 4y
Commmicaniony | S8
l 1 A% 212
Tas« 2 —
b INPUTAOUSPUL ,
R S SCANNING
i T Hand - HELD
INSTRULENE i L I T PUSH T T} CONFIGURATION
PAANMETERS 1 Buttcws B CUCE b ERMnA
ANA\OG {RPUT } L | el L
Fl
ANILOG (NALTS . I [N } £
n 1 G TNES
; ANLCG CuTAuT FAGNT
IA':;-w:u:. cuteut dieed : [ { Pants B
1 TIHE SCHEDRED
AL WPYTS St | —smfusen pRocaan
(] = [ L 3
ClGiTat CuUTAUE i praca]
(Ef'm quIALry =il 1 ——
I — oy
SETPGINT
QERTATER (1} : - %
S :
Aang I —1 2
oerrangN ity | = FIXEQ
4 1 WERDS
Rl -gLecns : TINE SCREQULED LSRRy
(¥} 1 e SER PAOGRAM - %
MaANUAL OfP 1 1) ;
ARALOG CUTPUT AAVSENQWERL D) 1 e
n | FIXED
DrsAtar i APPLICATIONG
SELECHCH (23 | LBAsaY
ALARN ] i
mocKs {2 1 i
1 > i
b ! BACRGROUHD USER = e
{12} 1 Lood jeer procaan WCRDS CCAFIGLRATE NG
vl suaceay || 8% UBRIRY U, L2, 86
FILIER i :
OEAD fouE i
DELAY BLOGKS (1} :
TOTALISATICN i VARIABLES
H .
L) i TmERS

PARSHEIEA HEMCAY
{ BATTERY BACHED AaM)
SEY BYHAMT

Fig. 2.2




RS&22 gtﬁfnwsonv
LINK
JASK 3 7

DATA
COMMUNICATIONS .-—'IR5232/— PRINTER TERMINAL
® OPERATOR TERMINAL
H—
3
DISPLAY
TASK 2
SYSTEM L S
MAINTENANCE | —_—
ROUTINES .
) Eraai BUTTONS
BLOCK 4 - FRONT PANEL
DIG OuT SOCKET
'
¥y
REAL TIME
MULTI -TASKING é',fogﬁc
EXECUTIVE
PROGRAMMING
TERMINAL
BACKGROUND
HIGH LEVEL
LANGUAGE
INTERPRETER
LOCAL
INSTRIMENT $ 4 ‘ ¢ i _ 1
STACK VARIABLES FIXED WORDS USERS WORDS
INSTRUMENT 1641 DICTIONARY ﬁg&%ﬁﬁ?;ns
i - PARAMETER - TIMERS [KERNEL PROGRAM |
DATABASE (16) INSTRUCTIONS) g
j K RAM
N {BATTERY .
BACKED RAM}
8K EEPROM
i

6445 MICROSUPERVISOR
FUNCTIONAL QVERVIEW

' 5 Fig 2.3

Shassadaipaurd



6356/66 Functional QOverview

The structure of the 6356/66 Controllers is illustrated in Fig.
2.2. It differs from the 6433 in that it includes 3 time

scheduled programs instead of 1. This zllows separate programs to -

be run for each of the available PID loops plus a background
program area that sets up I/0 interlocks, etc.

The instrument communications and tasks are the same as the 6433.
The "fixed Word Dictionary" has been extended to include a number
of additional words such as PID, MSCONT, RATIO, REMOTE, ALARM,

ete.

Two further Libraries containing the TCS fixed applications plus
an area to store customer applications programs are also included.

The program structure and the use of the "stack" are identical to
the 6433 above.

&§445 Microsupervisor

The structure of the 6445 Microsupervisor 1is 1illustrated in
Fig.2.3.

The 6445 1is basically an extension of the 6433 Programmahble Signal
Processor that allows four important advantages.

i) Input / Qutput Expansion

The 6433 1/0 is limited to the 32 channels of the four 1/0 cards.
The 6445 1/0 depends on the 1I/0 of the instruments connected to the
Instrument bus, which may be in excess of 60 analogue channels or 150

digital channels or combinations.*

* N.B. These fiqures are based on worse case conditions see
calculation in section 3.

ii) Local Task Control / Softwired Configuration

The 6445 provides a low cost and convenient means of self-wiring
interaction between small numbers of instruments. The local "task"
control has advantages over the supervisory computer tasking package
where speed, control security and cost are important.

iii) Increased Program Memory

The 6445 has 8K RAM and 8K EEPFROM, twice the memoTy size of the £433.

St

raliziatsiah

Lntdsininia



i
i
j

ot

"
3
e |
i

iv) Local Operator Displays and Logging

Features (i), (ii) and (iii) are direct extensions of the 6433
Programmable Signal Processor and consequently we now have
considerable experience in assessing and costing engineering
involvement.

Feature (iv) is =~ in the first release of the 6445, relatively
undeveloped and consequently care must be taken when making
quotations.

The two additional RS232 ports allow:-

(a) an additional programming terminal or operator VDU/
keyboard to be connected:

(b} a printer/data logger to be connected.

These ports together with the additional string statements allow data
to be buffered and presented to the display and/or printer by the
FORTH Frogram.

Programming Considerations

A stack-oriented language imposes a structured approach to
applications programming. Program statements or "Words" can only
call other routines that have already been defined and are
recognised by the interpreter. This implies "top down"
formulation of the problem with "bottom up" implementation of the
program.

The first step is to define the data base. This will comprise
real inputs and outputs according to the hardware configuration,
and then internal constants or "pseudo™ inputs and outputs for
derived values and constants requiring access from the front
panel. It should be noted that the 6433 derived values for
display should be set up as pseudo inputs because this allows the
facility of setting high and 1low alarms as for real inputs.
Conversely operator-set constants should be set as outputs so as
to allow use of the raise/lower buttons or hand-held terminal for
changing values.

Intermediate results used in more than one place in the program
but not required for display are conveniently set as variables.
This has the advantage of reducing dependence on the stack and can
allow individual pregram statements to be more self-contained.

The next step is to draw a flow chart for each independent task.
All tasks residing in the instrument must then be incorporated in
a master loop which performs scheduling; usually it is sufficient
to cycle sequentially through all the tasks and enclose them in a
BEGIN .... REPEAT structure. Two preliminary tasks are also
generally required to set up initial values of constants and to
reset timers, counters and flags, etc.



2.

The third step is to divide the flow chart into sub-routines of a
suitable size to be defined as program words. It may be desirable
for clarity to restrict word length to one line on the terminal
device, to a length set by the WINDOW operator. Longer statements
can be achieved by stringing together several words. Words should
as far as possible be self-contained.

The final step is to translate the flow chart into code and enter
the program, noting that words lowest in the hierarchy must be
entered first.

For simple analogue computations a block diagram approach is often
more appropriate than a flow chart. An example 1is shown in the
Appendix.

Individual parts of the program may be tested at any stage by
executing in immediate mode, simply by typing in the appropriate
Word name.

Program MemoTy

The TCS range of programmable instruments uses two areas of memory
for programs.

The first area comprises Random Access Memory (RAM) that is used for
developing and running user programs.

The second area is Electrically Eraseable Programmable Read Only
Memory (EEPROM) which is used for archiving programs. This memory
provides a secure method of storing programs and does not require a
battery when power is removed from the instrument. In addition,
switches or jumpers are provided on the boards to prevent accidental
erasure of the EEPROM.

When the instrument is powered-up, the program in EEPROM is loadead
into the RAM area and this program is then executed. The wuser
programs in memory are checksummed for security and this is
monitored whilst the program is running.

The EEPROM 1is also used to store a security name, security code and
8 window size that are required whilst programming.

Selecting a Program

When an instrument is powered up, it must decide which program to
run. The selection of programs varies slightly between instruments.

a) Program Selection for the 6433

The power-up procedure initiates a search through the dictionaries
for a program called MAIN. If this program 1is found, it will then
be run, otherwise the instrument is considered to be HALTED and this
diagnostic should appear on the front panel.

}
§

I




i

4
3

b) Program Selection for the Advanced Contreller

The Advanced Controller allows up to three programs to be rTun. Two
of these programs are scheduled at times selected within the program
and the third program runs in the background.

To allow flexibility, the wuser can select which programs are run
using a standard hand-held terminal. This 1is achieved by setting
the required program names into the parameters Ll, 12 and BG in the
general purpose data block. The programs specified in L1 and L2 are
the time scheduled programs, where L1 has the highest priority. The
program specified in BG runs in the background.

At power-up, the dictionaries are searched for these programs and if
they are found, they are then installed and run.

Changing the names of the required programs in L1, L2 and BG has no
effect on the programs that are running since these parameters are
only inspected at power-up or when invoked from a programming
terminal.

c) Program Selection for the Microsupervisor 6445

The power-up procedure initiates a search through the dictionary for
a program called BGRND. If this is found, it will then be run,
otherwise the instrument is considered to be HALTED and this
diagnostic should appear on the front panel status display






SRS

S branbiit]

Section 3

Getting Started

This section describes the equipment needed to program the TCS
instruments, and outlines some of the documentaticn conventions used.

3.1 Connecting a Terminal

Initially a oprogrammer requires a programmable instrument and a

programming terminal. The simplest programming terminal is a standard
VDU with an RS232 interface. The examples included in this section
assume the user simply has a standard vDU.

In addition TCS have written applications software to allow a BBC
model B compufer or an EPSON PX-8 portable computer to be used as
programming terminals, these computers provide additional facilities
to archive user programs and instrument data bases. (Ref 2277%)

The first step is to connect the VDU to the Hand Held Terminal (HHT)
socket on the front of the instrument, this should be done using the
lead described in Appendix 2.

The second step is to select the instrument baud rate to match that
of the VDU. The baud rate is selected wusing Switch Bank 1. With
switch 1 off the baud rate is set to 300 baud, however when switch 1
is on the programmer can select the baud rate using switches 2,3 and
4 in the normal way (see Table £.1). Normally whilst programming the
baud rate would be set to 9600 by setting switches 1,2 3 and 4 on.

Finally, check that the terminal data format is set correctly. This
should be:

1 start bit

7 data bits

1 parity bit (even)

1 stop bit (2 stop bits at 110 baud)

3.2 Typing Conventions

In common with many other manuals the following conventions are used
in this section.

1. Special function keys such as Return and Delete are enclosed in
angle brackets. This indicates that you should only type a single
key, eg if you are asked to type the line
1 2 <Returnm>

then type the two numbers separated by a space and then the Return
key.



2. Some characters on VDU terminals require the use of more than one
key, eg to type capital letters you would hold down the shift key
whilst typing the required letter. When an cperation requires more
than one key it will be written thus:

eg SHIFT-X Hold SHIFT key whilst typing X
CTRL-P Hold CTRL key whilst typing P

3. To avoid confusion between text typed by a programmer and messages.

from the instrument, all messages from the instrument will be
underlined.

3.3 Understanding the Stack

To understand and use the Forth programming language, a programmer
must learn the concept of a "data stack", (usually abbreviated to
"stack").

In simple terms a stack is an area of computer memory. Data can be
added or ‘“"pushed" on to the top of the stack, when this happens,
existing data is moved down one location. A further feature of the
stack is that data can only be removed from the top of the stack.

For this reason the stack is often described as "last-in, first-out®
{(LIF0}. As data is pushed on top of the stack, existing data is
pushed further down. As data is removed from the top of the stack,
the last data in is the first data out.

The Forth programming language uses Reverse Polish Notation (RPN} or
post-fix arithmetic, rather than the standard algebraic format.

This has several advantages:
a. The rules are very simple.
b. There is no need for parenthesis.

c. This is the way computers do arithmetic, and it makes the
programs more efficient.

Reverse Polish Notatien is simply a way of presenting data and
operations to a computer in the correct order for computation.

Whenever a number is introduced in a calculation, it is automatically
pushed onto the stack. Other operations or programs can modify, add
or remove data on the stack. In the examples below, the contents of
the stack are shown as a list of data, and the top of the stack item
is marked with an arrow.

,,,,,,




Example 1

The computation steps would be:

Step No Description
1 Stack the number 4
2 Stack the number 5
= 3 + (Remove numbers and replace
@ with the sum)
uj Example 2

Consider the sum 4*(5+6),in standard algebraic format
addition 1is

parenthesis to ensure that the

A Consider the sum (4+5) , this would be written in Reverse Polish as:

Stack

Top->: 4 :

Top->: 5 :
!

Top->: 9

on Jae

this requires
computed before the

multilication. This would be written in Reverse Polish as:

4 5 & + *

The computation steps would be:

f Step No Description
b
1 Stack the number 4
g
! 2 Stack the number 5
3 Stack the number 6
§ & + (Remove top two numbers and
’ replace with the sum)
5 * (Remove numbers and replace

with the product)

-
i
i
i

Stack

Top->: 4

ev e

u

Top->:

Top->: 6

w

Top->: 11

Top=->: 44 :



3.4 Keep Note of the Stack

It is important to know what is on the stack, and to maintain a
discipline of tidying up the stack when a preogram has finished.

If you have nothing on the stack, and you try and remove something,
then you will get a "Data stack underflow" error,.

There is also a limit to how much data can go on the stack. If you do
exceed this 1limit you will get a "Data stack overflow" error,
(although it is difficult to do this unless you make some mistakes).

The following notation is often wused with the description of a
program to describe the stack status before and after a word is
executed.

(before -- after)

The dashes separate the data that should be on the stack before the
operation from the data after the operation.

When there is more than one item on the stack, the item on the right
of the list is the top of stack item.

Eg the notation for the operation + in the previous examples is:
+ (nl n2 -- sum)

where n2 is above nl on the stack before the operation,

13
xi

Kot dwd

s cieiiisd

EERL

Ll e




Section &

Programming the Instrument

4.1 Introduction

This section provides an introduction to TCS programmable
instruments.

i The information provided here is intended to guide an individual with
some experience of computing through the first steps in working with
the instruments. As such the approach is intended to be relatively
simple, however, most sections are folowed by a summary so that they
can also be used as a reference manual at a later date.

i

4.2 First Steps

The first step is to find somewhere quiet, connect your terminal to
the instrument and gain some confidence with the programing

)
B technigues.

b oy

o o it

5
4
|




4,2,1 Logging-on

When the VDU is plugged into the front of the instrument the normal
HHT prompt 727 CMD should be printed on the screen. If it does
not, try typing the letter Z. If the 27 CMD prompt still does not
appear then:

N.B. There is no prompt for the 6445 Microsupervisor, simply type
CTRL-P.

1. Check the leads and baud rate on the instrument and the vDU.

2. Unplug the lead from the front of the instrument and then plug it
in again.

When the torrect display is shown on your VDU type

CTRL-P

The terminal will now display one of the following two messages:

1. ®* Please enter your security number *

The programmer should then enter a 3 digit security number.
Entering the correct code will result in the response:

* Hit space bar to change name *

If you want to change the name and security code type a space and
then proceed as outlined in part 2 below. Otherwise in
response to any other character the display will show:

* TCS Forth Version 1.{(1) *
* Have a nice day *
*Free nnn¥*

Where nnn represent the amount of memory available for pragrams.

2, * Please Log-on ¥ USER

You should now enter a 7 character user name {including spaces).
When you have done this the instrument will print:

* Your security number is yyy Remembep it *
* Hit space bar to change name *

The number yyy is your security code, make a note of this number
as you will need it next time you log-on to the instrument.

If you wish to change or correct the user name type a space and
have another go, otherwise in response to any ather character the
display will show:

* TCS Forth Version 1.(1) *
* Have a nice day *
*Free nnn*

Where nnn represent the amount of memory available for programs.




4.2.2 Logging-off

The procedure to return to the normal HHT operating mode depends on
the issue of software in use.

Type CTRL-Q to log-off when using TCS Forth version 1
Type CTRL-X to log-off when using TCS Forth version 2 & 3
The display should now print the standard HHT response:

?? CMD

4.2.3 Escape Key

Hitting the ESCAPE key whilst programming the instrument will abort
the current operation and print the standard message:

*Free nnn*

4,2.4 Single Line Editor

The programs are normally entered by typing a 1line of text at the
terminal. The editor is always in 'insert' mode, this means that any
characters typed are inserted inte the text before the character
pointed to by the cursor.

Naturally everybody makes mistakes, so to alter the text the user can
move the cursor forwards or backwards along the 1line of text using
the TAB or BS (BACK SPACE) characters respectively. To delete a
character move the cursor over the character, and hit the DELETE key.

If you type an illegal character this will ring the 'bell' on your
VDU and the character is ignored.

To terminate a line, or force a statement to be executed, hit the
RETURN key.

Finally only a limited number of characters can be displayed on one
line of a VDU screen, however it is possible that your program could
contain more characters than this. To allow you to edit the line you
will find that the editor shuffles the program accross the screen
when you try and move the cursor beyond the edges of the screen.

You can alter the length of the displayed string with the WINDOW
routine. You should normally set the window to be one less than the
number of characters displayed on a line, this avoids confusion when
the cursor attempts to move off the edge of the screen.

Eq & standard VDU will display 80 characters on a line, in this case
you should select a window of 79 characters by entering:

79 WINDOW <Return>



4,2.5 Have a Go

At this stage it may be wuseful to try typing some text at the
terminal, this should not cause any problems as you are not actually
connected to any real plant!

Try the effect of reducing the window size (you cannot make it
smaller than &).

Try modifying text on the screen using the TAB, BS and DELETE keys.

If anything goes wrong, hit the ESCAPE key and the terminal should
display:

* Free nnn¥*

4.2.6 Summary

Table 4.2.6 describes the single character commands introduced in this

section.

CTRL-P Initiate log on sequence (Halt all user programs)
CTRL-Q Log-off for Version 1

CTRL-X Log-of f for Version 2 & 3

ESCAPE Halt background program and print standard message
BS Back space single line editor

TAB Forward space single line editor

DELETE Delete character in single line editor

Table 4.2.6 Single Character Commands

Ty
3
i
e




= jﬂ
i
|

A
i

4.3 Interaction and the Interpreter

One of the major advantages of the FORTH language is that it is both
interactive and interpretive. This makes it easy to learn the
language since you can pick it up in easy stages.

An interprative language alsoc means that programs can be modified
very easily, simply by editing them. You don't have to worry about
compiling and linking programs as this is done automatically.

A further advantage of FORTH with respect to many other interpretive
languages, such as BASIC, is that the interpreter actually compiles
the program as you enter it, and NOT at run time. This means that
programs are very efficient, both in size and speed.

When you enter a program, the text is scanned for syntax errors
(typing mistakes) and valid references (that any programs you call
already exist). If there are any errors, a message will be printed on
your terminal. A list of the error messages and a more complete
explanation of their meaning is given in #x**xx *x,

This section will introduce you to the language by performing some
calculations directly at the vDU. In fact you will be using the FORTH
language as a rather sophisticated calculator.



4.3.1 Arithmetic Calculations

Arithmetic is performed in Reverse Polish Notation (RPN) or postfix
arithmetic, rather than the algebraic notation wused in written
arithmetic.

The rules of RPN are very simple, and will be familiar to those who
have used a Hewlett Packard calculator. The first process is to put
data onto the stack, then when the program reaches an operator (eg
Add) this will modify the data on the stack.

The most commonly used operators for arithmetic are:

+ Add
- Subtract 5
* Multiply

/ Divide

Consider an example to add the numbers 4 and 5

this would normally be written (4+3)

however in RPN it would be written 4 5 +

ey
f]

3

3

Taken step by step the following table shows what the computer would do

Eiehderd

: Step No : Operation : Stack position :
: £ ¢ 2nd : Top :
lmmm e cc e ;e —————— e S : oy
- 1 4 : - 4 : i
C 2 1 5 : & 8 : #
: 3 : + : - ) 9 :

A more complicated example that requires the use of brackets is the
expression:- 4%(5+6)

This would be written in RPN as:- 4 5 6 + * .

The following table shows what happens step by step =4

: Step No : Operation : Stack position

3 H t 3rd : 2nd : Top

= 1 s 4 g - 2 - : 4 . ?

: 2 5 : - 4 : 5

3 3 6 5 5 - 6

: 4 + : - 4 : 11 ;
5 * 3 - - i 44 4

Htmintninida



SR
Pzl

B
&

1
|
{
I

4.3.2 Try Some Arithmetic

You are now ready to try some examples at the terminal, naturally you
will want to see the results of your calculations, this can be
accomplished by printing the top value on the stack using the . (Dot)
function.

Type the following example at your keyboard:

{Escape>

*Free nnn*

4 5 + . <Return>
9

*Free nnn*

Try a few sums of your own and confirm that you are getting the
correct answers.

4.3.3 Summary

Table 4.3 describes the arithmetic functions 4introduced in this
section.

The notation follows the form described in section 3.4, and the
description column provides a concise explanation of the operation.

Operator Stack notation Description
+ {nl n2 -- sum) Adds (nl+n2)
= (nl n2 -- diff)  Subtracts (nl-n2)
* (nl n2 -- prod) Multiplies (nl#*n2)
/ (nl n2 -~ quot) Divides (nl/n2)

Table 4.3 Arithmetic Operators




4.4 Terminal Input Qutput Operations

This section describes the operators used for printing results or
messages on the terminal. These operators would normally be used
during program development to check results, and monitor the progress
of a program,

4.4.1 Numbers and Print Routines

All data used in programs is stored in the same format as floating
point numbers, however in scome cases it is useful to present data in
either Hexadecimal or ASCII formats.

Data can be entered in the following three formats:

a} Standard floating point numbers, eg 56 1000 1.2E-12 -5.678

b) Hexadecimal format can be wused toa represent a 16 bit number. This
number is preceded by the # character, eg #001C ##CDEF g

c) ASCII format can be used to provide a two character number. This
number i1s preceded by the $ character, eg $A8 $XY

Note that in TCS Forth Version 1 data can only be presented in
standard decimal format.

Numerical data aon the top of the stack can be printed in any of these
three formats.

Operator Description

: This operator {introduced in section 4.3.2) takes the number
of f the top of the stack and prints it on the terminal.

This operator takes the number off the top of the stack and

# prints it in Hexadecimal format. The number is preceded by
a ¥ for identification purposes.
$ This operator takes the number off the top of the stack and

prints it as two ASCII <characters. The characters are
preceded by a $ for identification purposes.

The examples below show how a single number can be printed in the
differing formats:

{Escape>

*Free nnn*

16706 . <Returny
16706

*Free nnn*

16706 4 <Return>
Haial

*Free nnn*

16706 $ <Return>
$A8

¥Free nnn*

-
A

SR St

Eiiviasis

B



Y
1
i
B
=0

4.4.2.Character Output

It may be

useful to print messages on the screen whilst programming,

or to provide some type of format when printing results. This can be
achieved with the following operators:

Operator Description

n
.

SPACE

CR

LF

BS

NL

EMIT

This word defines the start of a print string or message to
be printed on a terminal. The string must be terminated by a
double quote character. Try the example:

. THIS IS A STRING" <Return>
THIS IS A STRING

*Free nnn*

This word is only available in TCS Forth Versionm 3 and
cannaot be used in "immediate mode". The word defines the
start of a text string which is terminated by another
character. When the word is executed, it stacks the address
of the string as a floating point number. The printing
words . or $ will now print this number as a text string
rather than as a standard floating point number.

This transmits the standard ASCII space character to the
terminal.

This transmits the standard ASCII carriage return character
to the terminal.

This transmits the standard ASCII line feed character to the
terminal.

This transmits the standard ASCII backspace character to the
terminal.

This forces a new line on a terminal, it is a shorthand
version of entering CR followed by LF.

In some cases it is useful to be able to transmit special
control characters to the terminal. The EMIT operator takes
a2 value in the range 0 to 127 off the top of the stack and
transmits it to the terminal. Eg to send one character to
the terminal to ring the bell type:

7 EMIT <Return®

If the value is in the range 128 to 255 it is transmitted as
3 ASCII characters:

ESC Cl1 C2
where ESC is the normal Escape character (Decimal 27), and

Cl and C2 are the characters of low and high significance in
the Hexadecimal representation of the number.



80.16 is emitted as ESC 0O 8
FE.16 is emitted as ESC E F

Eg 128.10
254.10

Try to use a few of these operators and test their effect. You should
now be getting the hang of using the interpreter in what is called
"Immediate Mgde". This term means that your operations are executed
immediately, unlike in & program where you define a set of operations
that can be invoked at a later time.

The Immediate mode is a useful facility since it allows you to test

programs at your terminal.

R

i
i
]
x|

i daindadnidd



o
£k
§
!
it

£
#el
|
]

4,4.3 Summary

Table 4.4 provides a concise list of the words introduced in this

section.

Operator Stack notation

(nl --)

(nl -- )
$ (nl -- )
. oabed" (-~ )
SPACE ( ==
CR ( -- )
LF {( -- )
BS ( --)
NL { -- )
EMIT (nl --)
WINDOW (nl -- )

" abcd® (-- add)

Description
Print the value nl as a decimal number.

Print the value nl in hexadecimal format.
(Not available in TCS FORTH Version 1)}

Print the value nl as 2 ASCII characters.
{Not available in TCS FORTH Version 1)

Prints the string abcd on the terminal.
The " character terminates the string.

Transmit a space to the terminal.

Transmit a carriage return to the
terminal.

Transmit a line feed to the terminal.
Transmit a backspace to the terminal.

Transmit carriage return and line feed
to the terminal.

Transmit nl as an ASCII character

Set the terminal line length
(see section 4.2.4)

Stacks address of the string abcd. The
" character terminates the string.

Not available in TCS Forth Version 1
and 2.

Table 4.4 MNumber Printing and Terminal Control




4.5 Writing a3 Program

The Forth programming language is unusual with respect to many high
level languages. Its power comes from the ability to build wup
powerful programs, whilst allowing a programmer some access to the
primitive functions of the computer when reguired.

A Forth program comprises a series of "words"™, these correspond to
the functions or subroutines of other programming languages.

The words are stored in a dictionary. This dictionary already
contains a set of words that are fixed in the instrument. When you
write a word this is added to the end of the dictionary. The order of
the words in the dictionary is defined by the order in which the
words are entered.

There 1is no difference between using the words already in the
dictionary and the words you add to the dictionary, although for
convenience the words are normally listed separately. The only
restriction is that words can only call words that already exist
below them In the dictiaonary.

This means that a programmer would define a problem from the top
down, but must write the program from the bottom up. For example the
main program may be intended for boiler supervision - the top level.
This would be broken down into elements such as adjusting setpoints
and checking for safe operating conditions. This process continues
downwards to the basic functions of opening valves or triggering
alarm signals.

The programming phase now starts from the bottom level writing the
basic functions which will be used by other routines. In this way the
low level words can be written and tested before inclusion in the
main program.

!

4
3
]
3

b}



4.5.,]1 Creating a Word

B 3
i

A word is created by the user at the terminal. The general format of
a word is:

Name Program-code ;
This can be broken down into four parts.

a. The colon character : - This is a special word that defines the
start of a word definition.

b. The Name - This provides a unigue identifier for each word in the
dictionary. The name can contain any standard printing ASCII
characters. The compiler checks and stores the first 7 characters
in the name. If a name contains more than 7 characters a check is
made of the length of the string and the values of the first 7
characters.

c. The program code - This part contains the actual program, it
consists of other words from the dictionary or literals {(numbers).

d. The semi-colon character ; - This is a special word that
terminates the program. Every colon at the start of a word must be
matched by a semi-colon at the end of the word.

It is useful to see if any programs exist in the dicticnary before

entering a program. This can be done wusing the words FWORDS and

UWORDS. A more complete description of these words is given later in
this section.

Type the following line:
FWORDS <Return>

This should 1list the names of all the fixed words on your terminal.
You should recognise some of these from earlier sections.

Type the following line:

UWORDS <Return>

This should list the names of any words that have been added to the
user section of the dictionary. If there are no words in the user
dictionary an error message is printed.

Before writing any new words for the instrument, check that nobody
else has any programs in the instrument that they want to keep. Then
type the line:

NEW <Return>

This will delete all the user words in the RAM area of memory.

Write the following word and type <Return> when you have finished.
Since you are getting the hang of the language, the <Return> command



will he left out of the following anmples. You can tell when the key
is required because the instruments response is underlined.

TEST 4 5 + .
*Free nnn¥%

If you make a mistake the instrument will primt an error message and
retype the word so that you can modify it. When you are happy type
the <Return> key. Note you do not need tec move the cursor to the end
of the line before typing the <Return> key.

if you get lost or confused, don't panic! Type the <Escape> key, and
the instrument should print:

*Free nnn¥*

You can then start again.

This word should now be in your user word dictienary, try typing:
UWORDS

»

*% USER **

3

EST
¥Free non*

This is the same sum that you tried in section 4.3.2, however this
time it has been written as a program and stored in the dictionary.

70 run the word type:

TEST
32
*Free nnn*

This time try writing a word to average two numbers on the stack,
this word adds the top two numbers on the stack and then divides by
two to calculate the average. The result 1s printed with a message.

AVERAGE + 2 / ." The average is "
*Free ann*

Try the example:
4 5 AVERAGE

The average is 4.5
*Free nnn*

You should now be able to see how you can build up words to do simple
tasks that can be included in other words.

Try creating some words of vyour own, it is not difficult and with a
little practice vyou should start to gain confidence with the
language.

-
1
;

SR




4.5.2 Editing a Word

The editor within the instruments allows you to examine and modify
words that you have written.

To examine an existing word type:
Name <Return>

Where Name represents an existing program. If the program name does
not exist you will get an error message on your terminal. This
facility allows you to correct errors, or modify programs without
having to start from scratch each time.

The editor also allows you to create new words that are similar to
existing words. This is done by <calling up an existing word on the
terminal, you then modify the name of the word and the program, and
store the new word in your dictionary.

4.5.3 Dictionary Management Words

Whilst you are learning how to create words, it may be wuseful to
consider other words in the fixed dictionary that are wused for
modifying the dictionary contents.

Word Description

FWORDS This word lists the names of all the words in the fixed
dictionary on the terminal.

UWORDS This word 1lists the names of any words that the user has
added to the dictionary on the terminal.

AWORDS (6356/6366 only) This word lists the names of the application
programs in the fixed dictionary on the terminal.

ULIST This word provides a complete listing of the program on the
terminal by printing all the words in the user dictionary in
the order in which they were entered. The listing is
formatted to give some structure to the program. The listing
can be suspended and restarted by typing a character on the
keyboard.

FORGET This word deletes the last word entered in the wuser
dictionary. Words may only be deleted on a last in first out
basis, to avoid conflicts between word references.



INSERT

NEW

STORE

RECALL

CLEAN

This word allows a new word to be inserted within the current
user dictionary. The user would type

INSERT Name

*Free nnn#*

The new word can now be writtem and will be placed before the
named word in the dictionmary, ie it would appear to have been
written before the named word.

This word deletes all the programs stored in the RAM area of
memory. It is useful when reprogramming an instrument.

The STORE word is used to copy a program from the RAM area to
the EEPROM area. Note that at power up the program in EEPROM
is automatically copied to the RAM area, thus if the RAM area
contains a different edited version it will be overwritten.

The STORE word takes up to 40 seconds to execute. Data is
verified as it 1is written, and progress 1is indicated by
printing an asterisk every 100 bytes. If the transfer fails
then a printout occurs of the location and both the original
and incorrect data.

Note that when you store a program you also store the
current window size, user name and security code in the
EEPROM.

The RECALL word is wused to copy a program from the EEPROM
area to RAM area. Note that this occurs automatically at
power up, and any program in the RAM area will be
overwritten.

Note that RECALL will also restore the window size, user name
and security code stored in the EEPROM.

The CLEAN word restores the EEPROM memory to the unprogrammed
state. It operates in the same way as STORE by writing FF to
to every location in EEPROM.

g
|
5y
A

1
A




g
o
|
i

4.5.4 Summary

Table 4.5
dictionary.

describes the words associated with modifications to

Operator

: Namel

FWORDS
UWORDS

AWORDS

ULIST

FORGET

INSERT Namel
NEW

STORE

RECALL

CLEAN

Stack
{ --
{ s
{( --
{ o
{ ==
( --
{ ==
{ «-
( --
£ e
{ &=
-

Description

Create a new program called Namel or list
an existing program called Namel

Terminate a : definition
List the fixed words dictionary.
Lists the user words dictionary.

(6356/6366 only) List the application words
dictionary.

List the user program.

Delete the last word entered in the user
dictionary.

Insert a new word before the word Namel.
Delete all the programs stored in the RAM,
Copy programs from RAM to EEPROM.

Copy programs from EEPROM to RAM.

Clean the EEPROM memory.

the

Table 4.5 Dictionary and Word Management




Some examples of other stack manipulation words are given below, and
a full list is given in Table 4.6.1.

Word Description Stack before Stack after
DROP Discard the top of stack Top=->: 2 : Top=->: 1 :
item. : 1 - 3 -
DUP Make a copy of the top of Top->: 5 : Top->: 5 :
stack item. : 7 $ 3 5 H B
N ~ . < 7 . 3
5
OVER Maove a copy of the second Top->: 3 Top->: 4 : H
stack item to the top : 4 £ : 3 : 5
of the stack. : 9 : 4 : 7
: - ' g -
ROT Rotate the top three Top->: 6 : Top->: 8 :
stack items. : 0 3 : & : 3
: 8 : : o : 4
: 1 H - 1 H
e
i
PICK Replaces the pick argument Top=->: 3 : Top->: 8 '
with the required value 2 4 . 2 4
from lower on the stack. % [ 3 s & 3
: 8 H 3 8 wid
5 0 3 : 8] '
;j
ROLL Rotate the required number Top=->: 3 : Top->: 8 3
of values on the stack. 2 4 H : 4 : &
Note: H [ : £ 6 {
2 ROLL is equivalent to SWAP : 8 : 0
3 ROLL is equivalent to RQOT : 0 s -




iy
|
i
sl

ey
4
b |

4.6 Stack Manipulations

Previous sections have shown how you can do arithmetic with data on
the stack, however a programmer will often find that data is not in
the correct order on the stack for the required calculation.

Consider writing a word to find the reciprocal of a number on the
stack. The short form description of this word could be:

INVERT {n -- 1/n) Replaces n with its reciprocal value.
The required computation would normally be written as:

1l n/

but for the general purpose word, how do you get the number 1 below n
on the stack?

The solution is to use the word SWAP, which switches the order of the
top two stack items. The example below shows how the stack is
altered:

Before After
SWAP Switch the order of the Top=>: n2 1 Top->: nl .
top two stack values. i nl i £ nz :

Try the example:

1l 2 . SPACE .

21

*Free nnn*

Now try the example

1 2 SWAP . SPACE .

1 2

*Free nnn*

You should now be able to write the word INVERT, this would be:
INVERT 1 SWAP / ;

Try it and check that it really works.



4,.6.] Local variables

Note these local variables are not included in TCS Forth version 3.

Programs requiring access to several arguments or temporary variables
can Tesult in intricate stack manipulations, which can be difficult
to understand and maintain.

This problem can be alleviated by the use of local arguments within
an ARG-RES (arguments-results) structure. A programmer can allocate
up to 8 stack wvalues to be wused as arguments within an ARG-RES
structure. At the same time space for 8 results is reserved on top aof
the stack. Boeth the arguments and results can be used as local
variables within the structure. On leaving the ARG-RES structure a
number of results can be left on top of the stack for use by other
parts of the program.

To define an ARG-RES structure, the programmer defines the number of
arguments on the top of the stack with the ARG word, and this
automatically reserves space on the stack for 8 results

Stack before Stack after
This example shows how the Tap=->: 3 : Top->ResB8->: - :
stack is modified with the . 5 : L - :
ARG word when three arguments : 6 : -2 - ;
are required. 3 8 4 " 5->: -
The value xxx indicates the T XXX " 4-3; - v
initial limit on the stack. f - T - 2
1] 2_): - -
: L S - :
2 Arg3->: 5 :
H " 2->: 6 H
: "ol->t 8 %
I XXX

To leave an ARG-RES structure the programmer defines the number of
results that are to be left on the stack with the RES word. All other
arguments, results and residual data on the stack are discarded.

Stack before Stack after
Top->: 2 : Top->: 0 2
: M z w125 3
This example shows how the Res8- - H P XXX
stack is modified with the Y A -
RES word when two results oG- -

8->

7>

6=->

are required. " 5->
The value xxx indicates the Yoa-> s
initial limit on the stack RS X - :
when the ARG word was used. " 2= i

1->

3->

2->

1~>

m%

b L e e



!
|
i

The words GETARG, GETRES, SETARG and SETRES are used to access the
local variables. Simple examples showing how the stack is affected
are given below.

As you try to use these words, you will discover that they can only
be used within an ARG-RES structure.

ARG-RES structures may be nested, but only the arguments and results
associated with the current definition may be accessed.

Word Description Stack before Stack after
GETARG Copies the data from the Top->: 2 : Top->: 6 :
required Argument to the : 7 £ A 7 4
top of the stack. : .
Arg2->: & 1 Arg2->: 6 :
XXX 3 XXX
SETARG Move data from the top of Top->: 2 : Top->: 7
stack to the required . 4 H :
argument. : 7 : Arg2->: 4
Arg2->: & H XXX

GETRES Copies the data from the Top->: 1 : Top->: & H
required Result to the 3 7 H 3 7 -
top of the stack. 3 :

Resl->: 6 : Resl->: 6 1
TOXXX TOXXX

SETRES Move data from the top of Top->: 2 : Top->: 7

stack to the required : 125 = :

Result. 4 7 : Res2->: 125
Res2->: 3 3 POXXX

XXX :



4.6.2 Summary

Table 4.6.2 provides a concise list of the stack manipulation words

described in this section.

Wword Stack notation
DROP (nl -- )}
DUP (nl -- nl nl)

OVER (nl n2

ROT (nl n2
SWAP (nl n2
PICK (np

np

ROLL (nl n2

-- nl n2 nl)

n3 -- n2 n3 nl)
-- n2 nl)

nzZ nl p --
n2 nl np)

nr T =--

n2 .. nr nl)

?DUP (h -- n n) or
(0 -=- Q)
ARG (Al .. An n --

Al .. An Rl .. R8)

RES (Al

An Rl .. R8& m

-~ Rl .. Rm)

GETARG (nl --
SETARG (nl n2

GETRES (nl --

ARGnN)

= 3

ARGnN)

SETRES (nl n2 -- )

Description
Discard the top stack item.
Duplicate the top stack item.

Copy the second item and put it on
top of the stack.

Rotate the third item to the top.
Swap the top two stack items

Replaces the PICK argument p with the
data p elements deep on the stack.
{(Not in TCS Forth Version 1)

Rotate the top r elements on the’
stack and discard the ROLL argument.
(Not in TCS Forth Version 1)

Duplicate the top stack item if it is
net zero.
(Not in TCS Forth Versions 1 & 2)

Mark n values on stack as local
arguments and reserve 8 stack
locations for a local results area.

Discard the local arguments and
results, and replace with the
first m results.

Stack the data from local argument nl.

Move data nl to local argument n2.
Stack the data from local result nl.

Move data nl to local result n2z.

These words are not available in TCS Forth Version 3.

Table 4.6.2 Stack Manipulation Words

Eodiice

i
f
f
1
i
i




g
q
ok
o
et |

H
i
]
el |

4.7 More Arithmetic and Trigonometric Words

This section describes additional arithmetic and trigonometric words
available in the 1language. By now you should be familiar with the
notation used to describe a word, and full descriptions are not given
here, however it is worth trying each word out to familiarise
yourself with what is available.

Word Stack notation Description
ABS (n == znz) Return absolute value.
MAX (nl n2 -- n-max) Return maximum of two numbers.
MID {(nl n2 n3 -~ n-mid) Return middle of three numbers.
(Not available in Version 1)
MIN (nl n2 -~ n-min) Return minimum of two numbers.
MINUS  (n -~ -n) Negate the top of stack number.
SQR {n -- n*n) Square the top of stack number.
SQRT (n == SQRT(n)) Square root the top of stack number.
INT (n == n-int) Return integer part of n.
E ( -- e) Return e (2.71828) on stack.
PI ( -~ pi) Return pi (3.14139) on stacg
SIN {(n -- sin(n)) Return sin(n), n expressed in radians.
cos (n -- &os(n)) Return cos(n), n expressed in radians.
ATAN (n -- atan(n)) Return atan{n), expressed in radians

and in the range -pi/2 to +pi/2.

ATANZ (nl n2 -- atan(nl/n2)) Return atan(nl/n2), expressed in
radians and in the range -pi to +pi.

EXP {n -- exp(n)) Return exp{(n) on stack.

LN (n == 1n(n)) Return natural log, 1ln{(n) on stack.

Table 4.7 More Arithmetic and Trigonometric Words




4.8 Logical Words

These words allow logical operations or boolean arithmetic to be used
on data on the stack.

Since data is kept in floating point, programmers should consider the
way numbers are treated before the operation.

Numbers are treated slightly differently in Version 1, 2 and 3.

TCS Forth Versions 1 and 2

For all the logical words except NOT the two stack entries are
first rounded to the nearest integer, and limited to 16 bit
integers in the range 0 to 65535 (Hex values 0 to FFFF).
Negative numbers are all treated as 0. The boolean operation is
then performed on the two 16 bit words, and the result is
“converted to the floating point result.

TCS Forth Vversion 3

For all the logical words except NOT the two stack entries are
first rounded to the nearest integer. Positive numbers are
limited to 16 bit integers in the range 0O to 65535. Negative
numbers in the range -65536 to -1 are converted to their 16 bit
2's complement form, and numbers less than -65536 are treated as
0. The boolean operation 1is then performed on the two 16 bit
words, and the result is converted to the floating point result.

The lists below show how numbers are converted to 16 bit values for
boolean arithmetic.

Positive numbers Negative numbers
Versions 1 2 and 3 Version 3 only
Decimal Hexadecimal Decimal Hexadecimal
number equivalent number equivalent
65535 FFFF -1 FFFF

65534 FFFE -2 FFFE

32769 8001 -32767 8001

32768 8000 -32768 8000

32767 7FFF -32769 7FFF

1 0001l -65535 0001

0 0000 -65536 0000

”i?ﬂ
iy

!
et §

g e i
Cemrediniinies” Ritbaimimis

| PR



4.8.1 Examples

These examples show the effects of the logical or boolean words on

the stack.

Word Description Stack pbefore Stack after

AND Form the logical AND Top=->: 3 Top=->: 1
on the top two stack : 1 : 5
values. : 5 : : -

OR Form the logical OR Top->: 2 : Top->: 3 :
on the top two stack : 1 ; H 5 :
values. 3 5 - : -

N XOR Form the logical XOR Top~>: 5 : Top->: 2 Y
on the top two stack : 7 : : é
values. : 5 :

NOT Replaces a 0 on top of Top=->: 0 : Top->: 1 :
the stack with a 1, : 5 5 : 5 :
otherwise returns a 0.

= 4,8.2 Summary

) Word Stack notation Description

5

il AND (nl n2 -- and) Return the logical AND.

o OR {nl n2 -~ or) Return the logical OR.

XO0R (nl n2 -- xor) Return the logical XOR.

NOT (n -- §) Return flag where:

f=true=l if n=0, or f=false=0 if nf£O

Table 4.8 Logical Words

:
i
|
i



4.9 Comparison Words

The comparison words allow tests on data on the stack. The result is
returned as a flag on the stack where:

Flag
Flag

B

1
0

True
False

n

Since these words are reasonably simple to understand, you are left
to your own devices to find ways of testing them.

Word Stack notation Description

> (nl n2 -- f) Return true flag if nl is greater
than n2.

< {(nl n2 -~ f) Return true flag in nl is less
than n2.

= (nl n2 -- ) Returnvtrue flag if nl is equal to n2.

0> (n -- f) Return true flag if n is positive.

0< (n -= f) Return true flag if n is negative.

0= (n -~ f) Return true flag if n is zero.

Table 4.9 Comparison Words

3
3
i
3

a1

HERR



4.10 vVariable and Timer Words

The TCS Forth provides access to 64 general purpose floating point
variables, and 16 timers.

4.10.1 variables

In normal use, temporary data is stored on the stack, and modified or
discarded after it has been used, however, in some cases intermediate
results may need to be stored for later use elsewhere in a program.
For these aplications the programmer can read or modify 64 floating
point variables. These are referred to as variables 1 to 64.

In addition to reading or writing to the variables, words are also
provided to integrate or accumulate data into a variable, and also to
form the difference between new data and the current data stored in a
variable. Examples of how these words affect the stack and the
variables are given below:

Word Description Stack before Stack after
SETVAR Store the second stack Top=>: 7 : Top->: 3 :
item in the variable : 124 : - :
given by the top stack : 3 : 3 - :
item.
var 7 = xxx Var 7 = 124
GETVAR Replace the variable Top->: 7 : Top->3: 124
number with the data : 3 : 3 3

LU T

- .
4 - b

stored in the variable.

Var 7 = 124 Var 7 = 124

SUMVAR Add the second stack Top=->: 7 ' Top->: 129 :

item to the variable : 5 : z 3 3

given by the top stack : 3 - : - s

item, and return the

result on the stack. var 7 = 124 var 7 = 129
DIFVAR Store the second stack Top->: 7 : Top->: g H

item in the variable : 138 : 3

given by the top stack : 3 : - 3

item, and return the

difference on the stack. Var 7 = 129 var 7 = 138



4,10.2 Timers

The timers are generally vused in sequencing ocperations, for example a
programmer may want to measure the time period between two events,
check that actions are taken within a given time period, or provide a
delay. For these purposes 16 timers are provided, referred to as
timers 1 to 16.

The timers are set and read in seconds, however, they are stored as
32 bit registers, where one bit represents approximately 2ms. If you
do the arithmetic you will find that this represents plus or minus
4,294,967 sec or just over 7 weeks.

The timers count downwards, so that if a timer is initialised to 10,
then 10 sec later it will read back as 0, and a further 10 sec later
it will read back as -10. Timer values are updated continuously when
the instrument is powered up, this means that when a timer overflows,
below -4,294,967, it will automatically be reset to +4,294,967, and
continue counting down.

pue to the floating point format used within the instrument and the
2ms update rate, the timers can be set or read to a resolution which
is the larger of 2ms or 1 part in 2%%24.

Some examples of the effects of the timer words on the stack are
given below:

Word Description Stack before Stack after
SETTIM Store the second stack Top->: 3 : Top->: g :
item in the timer : 100 ¢ : - 5
given by the top stack : b/ H s - H
item.
Tim 3 = xxx Tim 3 = 100
GETTIM Replace the timer Top->: 3 : Top->: -15
number with the current 3 9 : 2 9 .
time in the timer. 2 - : -
Tim 3 = -15 Tim 3 = -15
+TIM Add the second stack Top->: 3 ¢ Top=>: 9 :
item to the timer : 100 : : - z
given by the top stack : 9 : - - 5
item.

78

1
I
N
N

Tim 3 Tim 3

(S

Cha s s

i
i
5
]




o
j

i

J
J

4.10.3 Summary

Word

GETVAR

SETVAR

DIFVAR

SUMVAR

GETTIM

SETTIM

+TIM

Stack notation
(vn -~ n)
(n ¥n -~ )

{nl vn -~ n2)

{(nl V¥n -- n2)

(Th -- n)
(n Tn -- )
(n Tn -=- )

Description
Return value stored in variable Vn.
Store value n in variable vn.

Return the result nZ=ni-value in variable Vn,
and store value nl in variable Vn.

Add nl to the value stored in variable Vn,
the result is also returned as n2.

Return current value in timer Tn.
Store time n seconds in timer Tn.

Add n seconds to value in timer Tn.

Table 4.

10 Vvariable and Timer Words




4.11 Terminal Input

This section describes the words that allow a program to receive data
from the programming teminal.

The words are normally wused in conjunction with the printing words
described in section 4.4, and are particularly useful when debugging
and testing new words.

The word KEY examines the input buffer to see if any keys have been
pressed, and returns immediately to the program with the result on
the stack.

The word NUMBER suspends the program until a valid number has been
entered at the keyboard.

The effects these words have on the stack is shown below. Naturally
these words would be used in different applications, and examples of
words wusing KEY and NUMBER are given in sections 4.12 and 4.13.

Word Description Stack before Stack after
KEY Read any characters from Top=->: 5 : Top=->: 0 2
the programming terminal. 3 - H : 5 :

Example where no key was typed

Top->: 5 : Top->: 65 H
2 65 t
% - - : 5 v

e

Example where letter A was typed

NUMBER Suspends the program Jop->: 5 : Top->: 7.1 :
until a valid number : - H : 5 :

has been entered.

Example where 7.1 was typed

Operator Stack notation Description

KEY ( -- ¢ c) or Return the ASCII value of the next
{ --0) character from the terminal and a 1 flag,
or a 0 flag if no character available.

NUMBER { -- nl) Suspend program till a valid number is
entered at the keyboard.

Table 4.11 Terminal Input Words

1
:
3
t
A

2

Wisisdsinfaias



ik

4,12 Conditional Branches

A characteristic of a programming language is the ability to make
decisions. This allows you to follow different routes through a
program depending on various conditions.

Two types of conditional branch structures are described here:

4.12.1 IF ... ELSE ... ENDIF structures

This structure allows a programmer to select a choice of two routes
through a progranm.

The IF word tests and discards the number on top of the stack. If the
number is not zero, then the statement following the IF is executed.
If the number was zero then the statement after the the next
appropriate ELSE would be executed.

To reduce the chance of programming errors, the TCS Forth Interpreter
checks the program before it 1is compiled, this means that the words
IF and ENDIF must occur in pairs to mark the start and end of the
branch structure, and only one ELSE should be used between the IF and

ENDIF.

Try the following example on your terminal, by creating the words
GETNUM and T1, and then execute TI.

By this stage you should be familiar with the TCS Forth and from now
on examples will show how words would be used in a program, and the
intermediate responses from the instrument will not be given.

: GETNUM ."™ Enter a number" NUMBER ;

Tl GETNUM NL 0< IF ." Negative™ ELSE ." Positive™ ENDIF ;

The ELSE word is optional within an IF .. ENDIF'pair, as shown in the
following example:

: GET+NUM ." Enter a positive number™ NUMBER ;
: T2 GET+NUM NL O0< IF ." I said a positve number"™ ENDIF ;
The IF .. ELSE .. ENDIF structures can be nested, but remember this

will make a program more complicated, and will require careful
testing.



4.12.2 CASE ... ENDCASE Structures

This structure allows one of several options to be selected depending
on the initial argument on top of the stack, this can provide a very
powerful structure, particularly in sequencing applications.

The following three sets of words are associated with this structure,
and must always occur in pairs to mark the start and end of a section
of program.

CASE ... ENDCASE
OF ... ENDOF
ELSOF ... ENDOF

CASE ... ENDCASE

The CASE and ENDCASE words mark the bounds of a section of program
where the OF, ELSOF and ENDOF words can be used.

The CASE word leaves the original entry or 'CASE argument' on the
stack unchanged, whilst the ENDCASE word will drop this argument if
it has not been dropped by an OF or ELSOF word within the structure,.

OF ... ENDOF

The OF word examines the two numbers on top of the stack, these would
normally be the original CASE argument and the OF argument (which is
on top of the stack). The OF condition is defined as true when the
CASE argument is less than or equal to the OF argument.

If the OF condition is true then both the CASE and OF argﬁments are
dropped off the stack, and execution continues from the word
following the QF,

If the OF condition is false then just the OF argument is dropped off
the stack, and execution is transferred to the word following the
appropriate ENDOF.

The ENDOF word wmarks the end of an OF ... ENDOF section, and

transfers execution of the program to the word following the
appropriate ENDCASE.

ELSOF ... ENDOF

The ELSOF word can be wused to trap CASE arguments greater than the
maximum OF argument, and it is assumed that the CASE argument is
still on the stack.

If the ELSOF word is executed then the CASE argument is dropped off
the stack, and execution continues from the word following the ELSOF.

The ENDOF word marks the end of an ELSOF ... ENDOF sectiaon, and
transfers execution of the program to the word following the
appropriate ENDCASE.




-
!
i
'

Note that since the ELSOF word transfers program execution to the
word following the ENDCASE, only one OF ... ENDOF or ELSOF ... ENDOF
segment can be executed each time the CASE structure is executed.
The following example shows how different words can be executed
depending on a number typed at the keyboard. You should be able to
see how these messages could be replaced with particular operations
in a sequencing application.

Ml NL ."™ Number less than or equal to 0" ;

MZ NL ." Number between 0 and 1"

M3 NL ." Number greater than L"

T3 NUMBER CASE 0 OF M1 ENDOF 1 OF M2 ENDOF ELSOF M3 ENDOF ENDCASE ;

4.12.3 Summary

Word Stack notation Description

IF (f == ) If f is true {(non-zero) execute code
following IF word. Otherwise transfer
execution to the word following the
ELSE (if it exists) or the ENDIF.

ELSE { -- 2 Marks the end of a block of conditional
code. Transfer execution to the ENDIF word

ENDIF ( == Marks the end of an IF structure.

CASE (nl -- nl) CASE marks the start of the CASE
structure.

ENDCASE (nl --) Drops the case argument,
OF {nl n2 -- nl) or If nl <= n2 then drop nl and n2 and
(nl n2 -- ) execute following code. Otherwise drop n2

and transfer execution to the first word
after the ENDOF statement.

ELSGF (nl --) Drop the case argument nl and execute
following code.

ENDOF { ~~ Transfer execution to the first word
after the ENDCASE statement.

Table 4.12 Conditional Branches




4.13 Loop Structures ,'

"Yhe last section covered 'decision making' by cuhditinnally exchting
some parts of a program.

This section ‘covers words “that allow a prugram to cond”i“"
branch back to ‘an earlier part of the program,
is called a loop and allows repetition of a segment of prOQram

Words are provided to allow a programmer to execute a sectlon of code.

a number of times, to wait until some event occurs or simply to 51t
in a loop indefinately (not as stupid as it sounds).

Loops are usually divided into two types, definite and indefinite
loops. A summary of the words used in these structures together with
their effects on the stack is given at the end of this section,
whilst a description of how the words work and examples are given
below.

4,13.1 Definite Loops

Definite loops have a defined start and end point.

po ... LOOP structure

The D0 and LDOP words define the start and end points of a loop
structure, and must always be used as a pair.

The word DO sets up a loop and takes two arguments from the stack.
The top number is the 1initial index or starting point for the loop,
and the second value is the loop 1limit. The DO word takes these
values off the stack, and stores them for its own internal use.

The word LOQP increments the current index value, and compares this
to the 1limit value given to the DO word. If the new index is less
than the limit then the program branches back to the word following
the DO. When the new 1index is equal to the 1limit the program
continues with the word following the LOOP.

Since the LOOP word increments the index before comparing it against
the limit, the loop is never executed with the index equal to the
1imit, this should become clear in the later examples. The following
code would print the word Hello 10 times on your terminal--try it.

10 0 DO NL ." Hello" LOOP




The 1 word

The word 1 stacks the index for the current OO ... LOOP structure.
This index was mentioned in the previous paragraphs and describes the
current status of the loop.

The following example shows how the index wvaries, the loop is
executed 10 times with an index starting from 0, but 1is never
executed with an index = limit.

10 0 DO I . LOOP

this should print the following on your terminal:

0123456789

00 ... +LDOP structure

The DO and +LOOP words define the start and end points of a loop
structure, however, whilst the LOOP word simply increments the index
the +LO0OP allows other increments. The words DO and +LOOP must always
be used as a pair.

The word +L00OP takes a value off the stack and adds it to the current
index value, the new index is then compared to the limit value given
to the DO word. If the new index has not yet reached the limit then
the program branches back to the word following the DO. W4When the new
index is equal or passes the 1limit the program continues with the
word following the +LOOP. '

The following example shows how the index can be altered with +LQOP.
Do you understand why the initial index in this example was not set
to 0 72

128 1 DO I . SPACE I +LOOP

The LEAVE Word

The word LEAVE sets the current index value equal to the final limit.
This causes the prcegram to leave the loop the next time the word LOOP
or +L0OP is encountered.

Note that DO ... LOOP and DO ... +L0O0P structures can be nested,
however, the words I and LEAVE only operate on the current loop
index.



4.13.2 Indefinite Loaps

This type of loop can repeat indefinitely, or wuntil some event
occurs.

BEGIN ... REPEAT structure

Normally you will write a series of words that will scan the inputs
and outputs and take any appropriate action. At this point the
program would stop, and you would have to execute the words again
from the keyboard.

The BEGIN ... REPEAT structure allows your words to be included in an
infinite 1loop, so that your program will run indefinitely, or at
least as long as the instrument is powered up.

The BEGIN word marks the start of an indefinite loop, it also clears
the *HALTED* message or flags that can flash on the front panel of
the instrument.

The REPEAT word marks the end of an indefinite loop, and branches the
program back to the BEGIN word.

Note for instruments with multi-tasking. When the word REPEAT is
encountered in a time scheduled task, the task will be descheduled,
however, the next time the program is scheduled it will recommence at
the BEGIN word.

The following example will print the letter A on your' terminal
indefinitely, or until you stop the program with the <{Escape> key.

BEGIN 65 EMIT REPEAT

BEGIN ... UNTIL structure

The BEGIN ... UNTIL structure surrounds a section of program that
runs indefinitely, until a condition is met.

The UNTIL word takes a number off the stack. If this number is 0 the
program branches back to the BEGIN word, otherwise the program
continues with the word following UNTIL.

Note for instruments with multi-tasking. When the word UNTIL is
encountered in a time scheduled task and the UNTIL condition is not
satisfied, the task will be descheduled; the next time the program is
scheduled it will recommence at the BEGIN word. When the UNTIL
condition is satisfied the program continues with the word following
the UNTIL.

The following example waits until a key is typed on the terminal:

BEGIN KEY UNTIL ." That was "




.
!

i el

po AN

b SESEREIN

Bl

i
i
i
v

4.13.3 Summary

Word Stack notation
Do (limit index --
LOOP ( --)

+L0O0OP {(n -~ )

I ( -- index)
LEAVE ( --)
BEGIN ( ==
REPEAT  ( ;— )

UNTIL (f ==

)

Description

Set up a finite loop, with a start point
for the index and a final limit.

Increment the index, and transfer
execution back to the word following the
DO while index < limit.

Add n to the index, and transfer execution
back to the word following the DO until
the index reaches or passes the limig.
Return the current loop index value.

Leave the locop at the next LOOP or +LOOP.
Mark the start of indefinite loop.

Transfer execution back to the BEGIN word.

Transfer execution back to the BEGIN word
while the flag is false (0).

Table 4.13 Loop Structures




4.14 Instrument Specific Words

The TCS Forth provides a common programming style on the programmable
instruments, however each instrument is designed for a different
application, and there are some words that are unique to each
instrument. These words cover data base access, display selection and
other special functions.

Full descriptions of these words with application examples are given
in the appropriate technical manuals, however, for completeness, all
the words are also described here.

4,14.1 Special 6433 Words

The 6433 Programmable Signal Processor is capable of sophisticated
computation and sequencing functions dependent on the state of the
input and output signals stored in its data base. This section
describes the words used to inspect or modify these values.

-
i 3‘
ot

Each input or output from the instrument 1is described by a Board
number (Bn) and a Channel number (Cn). The following four words are
used to access the inputs and outputs.

GETAN Moves the analogue data from the required board and channel
to the top of the stack. The value is returned in engineering
units with the full resolution available from the a-d
conversion. The following example would print the current
value on analogue board 1 channel 3.

1 3 GETAN

isinensanat

SETAN  Moves the data, in engineering units, to the required board
and channel output. The following example would set the
analogue output on board 2 channel 5 to 80 units.

80 2 5 SETAN

GETDIG Moves the digital status from the required board and channel
to the top of the stack. The value returned is either a 1 or
0 depending on the status of the input or output. The
following example would print the current status of digital
board 2% channel 7.

3 7 GETDIG

SETDIG Modifies the digital status of the required board and channel
output. The output is set low if the data 1is zero, otherwise
it is set high. The following example would set the digital
output on board 4 channel 2 high.

1 4 2 SETDIG ‘5



A program can also access the complete data base of the instrument,
including status words, ranges and limits. Each parameter in the data
base is described by a Board number (Bn) and a Parameter number (Pn},
where the parameter numbers are identical to those used for the
binary protocel. The data is returned to "display" resolution, ie
the same as 1t would appear on the front of the instrument or on a
hand-held terminal. The following two words are used to access these
parameters.

GETPAR Moves the data from the required board and parameter to the
top of the stack. If board 1 of your instrument is an
analogue board, the following example would print the current
value of the high range of board 1 channel 3.

1 33 GETPAR

SETPAR Moves the data to the required board and parameter. If board
2 af your instrument is an analogue output board, the
following example would set the output high limit of

-
i
o

o board 2 channel 4 to 95 units.
o
i3
95 2 44 SETPAR .
é In some cases a programmer may want to force the front panel display to
i a particular board and channel. This c¢ould be wuseful for alarm
. annunciation or operator interaction. The following words allow the
E% program to monitor or change the front panel display.

GETBCN Returns the board and channel numbér currently selected on
=3 the front panel display. The following example will print the
A current front panel board and channel numbers.

- GETBCN SWAP ." You are looking at board " . ." channel " .
*j SETBCN Selects a specific board and channel number for the front

panel display. The following example sets the front panel to
board 1 channel 5.

1 5 SETBCN

TAG. " This word transfers the following text string, up to 8
characters, to the tag display of the currently selected
front panel board and channel. The following message would
print START UP on the tag display.

TAG." START up®

-
!
:
wod



4.14.2 Summary of Special 6433 Words

Word

GETAN

SETAN

GETDIG

SETBIG

GETPAR

SETPAR

GETBCN

SETBCN

TAG." abc"

Stack notation Description

{(Bn Cn -- n)

{(n Bn Cn -- )

{Bn Cn -- f)

{(f Bn Cn == }

{Bn Pn -- n)

{n Bn Pn -- )
{ -- Bn Cn)
(8Bn Cn -- )

( ==}

Return analogue value from the appropriate
Board and Channel.

Store analogue value n to the approriate
Board and Channel.

Return a flag depending on the digital
status of appropriate Board and Channel.

Set or clear digital status on appropriate
Board and Channel.

Return value from appropriate Board and
Parameter.

Store value n in appropriate Board and
Parameter.

Return the Board and Channel numbers
currently displayed on the front panel.

Set the front panel display to the
required Block and Channel.

Transfers the string abc to the current

tag. The " character terminates the string.

Table 4.14.2 6433 Data Base Access Words

S




g
|
£}

¥

it

i S

3
4

4.14.3 Special Advanced Controller Words

The Advanced Controllers allow a programmer to set up a special
control strategy within a stand alone instrument. This can simplify
many installations that bave previously required considerable
analogue and digital computation units in addition to a controller,

Data in the instrument is referenced by a Block number (Bn) and a
Parameter number {(Pn), see Appendix 2.

To simplify access to the data base fixed words are provided to place
the 8lock and Parameter numbers on the stack. The Block numbers are
given by a 3 character word, the first two characters are the block
mnemonic and the third character is the relative block number. The
following example would print the absolute block number of Setpoint

Block 2.

SP2Z

The parameter numbers are given by a 2 character word which is
identical to the mnemonic used by the hand-held terminal. The
following example would print the parameter number for PV.

PY .

The following words are used to access the Advanced Controller data
base.

GET Moves the analogue data from the required block and parameter
to the top of the stack. The following example would print
the Process Variable from Setpoint Block 1.

SP1 PV GET .

SET Moves data to the required Block and Parameter. The following
example would set the Local Setpoint in Setpoint Block 2 to
40 units.

40 5P2 SL SET

¥GET This is similar to GET, however the word returns the data as
a normalised value in the range -100% to +100%. The following
example prints the Process Variable from Setpoint Block 1 as
a percentage of its range.

SP1 PV %GET
%SET This is similar to SET, however the data on the stack is
expressed as a percentage of full range. The following

example would set the Local Setpeoint in Setpoint Block 2 to
20% of its range.

20 SP2 SL XSET

GETDIG Moves the digital status from the required digital input to
the top of the stack. The value returned is either 3 1 or ©



SETDIG

depending on the status of the input or output. The following
example would print the current status of digital input 3.

DIl 3 GETDIG
Modifies the required digital output. The output is set low
if the data is zero, otherwise it is set high. The following

example would set digital output 4 low.

0 D01 4 SETDIG

The Advanced Controllers can run two time scheduled programs in
addition to a background program. The following words are used to
modify and monitor the program repeat times, or to start and stop the
user programs.

GETREP

SETREP

RUN

HALT

Moves the program repeat time (in seconds) to the top of the
stack. The following example would print the program repeat
time for the first time scheduled program.

1 GETREP

Sets the program repeat time. The following example would set
the second time scheduled program to run at .5 second
intervals.

.5 2 SETREP

This forces a dictionary search for the programs defined in
the General Purpose Block parameters L1, L2 and.BG. If the
programs are found they are then installed and run. (This is
automatically done when the instrument is powered up).

This stops all user programs. Successful attempts to edit
user programs automatically force a HALT.

The - Advanced Controllers use a number of additional]l words assoclated
with the special blocks within the data base. These words are briefly
described below.

PID

PIDX

This word is used to compute a control output from the Process
variable on the stack. The following example takes an input of
1200 units and stores the value as the Process Variable in
Setpoint Block 1. It then calculates an cutput dependent on the
Setpoint 1in Setpoint Block 1, the 3-term parameters in PID
Control Block 1 and the mode in Display and Control Block 1.
The result is then discarded.

1200 371 PID DROP

Normally a control loop is made up of a Setpoint Block, a PID
Block, a Manual Station Block and a Display and Control Block,
which are automatically linked together. In some cases only one
control loop 1is required, but with two sets of 3-term
constants. The PIDX word allows the user to specify which PID
block iz used, and which loop it is linked to. The following

[




3

i i
Sase s

MSCONT

REMOTE

XREMOTE

RATIO

ALARM

FILTER

SETDEL

example takes an input of 1500 units and stores the value as
the Process variable in Setpoint Block 1. It then calculates an
output dependent on the Setpoint in Setpoint Block 1, the
3-term parameters in PID contrel Block 2 and the mode in
Display and Control Block 1. The result is then discarded.

1500 1 372 PIDX DROP

Moves data from the stack to the output register of the
appropriate Manuwal Station Block only when the loop is in an
AUTO mode. The following example sets the output of Manual
Station 1 to 50% when loop 1 is in AUTO.

50 MS! MSCONT

Moves data from the stack to the Remote Setpoint of the
required Setpoint Block. This also configures the loop as a
remote setpoint contreoller. The following example sets the
Remote Setpoint register of Setpoint Block 2 to 65 units.

65 S5P2 REMOTE

This word 1is similar to REMOTE, however the setpoint is
expressed as a percentage of the setpoint range. The following
example would set the Remote Setpoint of Setpoint Block 1 to

25%.
25 SP1 ¥REMOTE

Uses data on the stack as the ratio process variable and moves
the result to the Remote Setpoint of the appropriate Setpoint
Block. This also configures the loop as a ratio controller. The
following example takes a ratio process variable of 800, and
calculates the Remote Setpoint for Setpoint Block 1, wusing the
values in Ratio Block 1.

800 SP1 RATIO

Moves the data on the stack to the appropriate Alarm Block and
updates the alarm block status bits. The following example
would set Alarm Block 2 Process Variable to 400, check this
value against the alarm limits, and update the alarm status

bits.

400 AB2 ALARM

Uses the data on the stack as the input to the appropriate
Filter Block, and returns the resultant output on the stack.
The following example prints the result of applying an input of
30% to Filter Block 1.

30 FBl FILTER .

Moves data from the stack into the buffer of the appropriate
Delay Block. The following example moves the value 18 into

Delay Block 1.



GETDEL

TOTAL

18 OBl SETDEL

Mpoves data from the approriate delay line to the stack. If the
following example is included in a program it will use Delay
Block 1 to retransmit an analogue input delayed by 20 seconds.

AIl AV GEY DBl SETDEL 20 DBl GETDEL ADl AQ SET

Takes data from the stack as the input to the appropriate
Totalisation Block. The word returns a flag which is 0 if the
Flow Total is unchanged, or 1 if the Flow Total has been
incremented. The following example wuses the value 10 as the
current input to Totalisation Block 1, and prints the flag on
the terminal.

10 TBl TOTAL

The following word allows a user program to change or lock the front
panel display to a particular loop.

SETLN

Takes the front panel loop number from the stack. If the loop
number is negative this locks the front panel to the selected
loop, and means the wuser cannot change the displayed loop
from the front panel. The following example would set the
front panel to display loop 2.

2 SETLN

Lhuidiinmits

1
3
]
g

hisked

Bl



4.148.4 Summary of Advanced Controller Special Words

s

1 i
[N

i
i
—d

This section describes the data base access routines and special
function words associated with the Advanced Controller.

Word Stack notation
GET (Bn Pn -- n)
SET {n Bn Pn -- )
%GET (Bn Pn -- n)

%¥SET {n Bn Pn -~ n)

GETDIG (Bn Dn -- f)

SETDIG (f Bn Dn -- )
GETREP (nl -- n2)

SETREP (nl n2 -- )

RUN { --
HALT ( --)
PID {(PVY Bn -- OP)

PIDX {({PV n Bn -~ OP)

MSCONT (OP Bn -- )

REMOTE (SP Bn -- )

%¥REMOTE (%SP Bn -- )
RATID (RPY Bn -- )
ALARM (PVY Bn -- )

FILTER (PV Bn -- 0OP)

Description
Return data n from the Block and Parameter.
Move data n to the Block and Parameter.

Return data n from the Block and Parameter.
The data is returned as a percentage of range

Store the value n expressed as a percentage
in the Block and Parameter.

Return a flag depending on the status of the
Block and Digital channel.

Modify status on Block and Digital channel.
Return program nl repeat time in seconds.
Sets program n2 to run every nl seconds.

Search install and run the programs defined
in parameters L1, L2 and BG.

Stop all user programs.

Compute the control ocutput from the Process
Variable using parameters in PID bleck Bn.

Compute the control output from the Process
Variable using parameters in PID block Bn,

Link PID constants to loop n

Update the 0P register of the Manual Station
Block Bn when the loop is in an AUTO mode.

Update the Remote Setpoint of Setpoint Block
Bn.

Update the Remote Setpoint of Setpoint Block
Bn. Setpoint expressed in percentage.

Uses Ratio Process Variable to update the
Remote Setpoint of Setpoint Block Bn.

Update the Alarm Block PV and ST registers.

Updaie the Filter Biock FI and 0P registers.



SETDEL  {nl Bn -~ ) Push data nl into the buffer of the Delay
Block.

GETDEL (nl Bn -- n2) Return data delayed by nl seconds from Delay

Block Bn.

TOTAL {nl Bn -~ f} Totalise data nl in Totalisation Block Bn.
The flag is set if the Flow Total has
increased.

SETLN (n -~ ) Set front panel display to loop n. If n is

negative, disable front panel loop changes.

Table 4.14.4 Advanced Controller Special Function Words

i

S s siratih



‘f
4
G

I

iy i

i
i
W

Braali, da

4.14.5 Special Microsupervisor Words

The Microsupervisor provides the computation and sequencing
facilities associated with the TCS range of programmable instruments.

In addition to the normal serial 1link to a computer supervisory
system, the instrument has a serial lime that allows the supervision
and interaction of a group of instruments. Further serial lines are
provided that can be connected to a printer or terminal to allow
logging and some operator interactions.

Data from individual instruments connected to the serial bus is
accessed by an Instrument number (In) and the binary protocol
Parameter number (Pn). The following words are used to access the

instrument data.

GETEXT This word returns an error flag and data from the
specified point. If there is no error, the data is
stored on the stack and the error flag is set to 0. When
an error occurs, only a non zero error flag is returned
on the stack. The following example would fetch the
instrument identity of instrument 3 and print it on a
terminal.

3 18 GETEXT IF ." ERROR" ELSE ." 1I="3F ENDIF H

The errdr numbers associated with GETEXT are listed in
section 4.14.6.

SETEXT This word moves data to the required instrument and
parameter and returns a flag on the stack. The flag is @
if there is no error. The following example shows how
the proportional band of a controller with instrument
number 8 could be set to 25%.

25 8 20 SETEXT IF ." ERROR" ENDIF

The Microsupervisor has 8 digital inputs, B8 digital outputs and 6
pushbuttons. The following words are used to modify or monitor these

signals.

GETDI Moves the digital status of the required input to the top
of the stack. The value returned is either a 1 or 0,
depending on the status of the input. The following
example would print the status of digital input 2.

2 GETDI

SETDO Modifies the digital status of the required output. The
putput is set low if the data is zero, otherwise it is



set high. The following example will set digital output
5 low.

0 5 SETDO

GETDS Returns the status of all 8 digital inputs as a number on
top of the stack. The following example would print the
digital input status on the terminal.

GETDS #

SETDS Modifies all digital outputs with the data on top of the
stack. The following example will set digital ouvtputs 1,2,3
and 4, and reset digital outputs 5,6 and 7. Digital output 8
will be reset if it is not allocated to a changeover relay.

H#F000 SETDS

2?F Returns the status of the required front panel
pushbutton. The wvalue returned is either 2 1 or O
depending on the status of the button. The following
example would print the status of pushbutton 5 on the
terminal.

5 2F

To allow data and messages to be logged to a printer, or operator
interaction at a terminal, the program can select which serial line is
used for terminal input and output.

LINE Selects a serial line or display for input and output. The
following line number options are available:

Alternate programming terminal serial line.
Printer serial line.

Front panel serial line.

Front panel tag display.

[ WY R R V]

The following example would send a message to the printer
and then switch input and output back to the front panel
line.

4 LINE ."™ PRINTER TEST"™ 5 LINE

The following words allow a program to present messages or data on the
front panel tag display.

TAG." This word transfers the following text string, up to 8

bt
]
i

gt

Woadamplin i

PR

Shaiatahimieis

SOOI




characters, to the tag display. This example would show WAIT
KEY on the tag display.

TAG." WAIT KEY"

TAG. Prints the number on top of the stack on the tag display.
This example prints a number on the tag display.

12.34 TAG.

When wusing the Microsupervisor in data logging applications, the standard
print routines do not provide a tidy way of displaying numbers. The
following words are used to format numbers in the same as they would
appear on the front panel of a standard TCS instrument.

LFMT. Prints a number as B characters left justified, with a defined
number of characters after the decimal point. This example
prints a number with two characters after the decimal point.

12.5 2 LFMT.

RFMT. Prints a number as 8 characters right justified, with a
defined number of characters after the decimal point. This
example prints a number with three characters after the
decimal point.

1.234 3 RFMT.

To enable data logging applications, a time of day clock and a calendar
are included in the instrument. The words used to access these features
are described below.

GETCLK Returns the time as three values on the stack. The following
example would print the time in the order - hours, minutes and
seconds.

GETCLK . SPACE . SPACE

SETCLK Uses three wvalues on the stack to initialise the clock. The
following example sets the clock to 10:30:00: (half past ten).

10 30 O SETCLK

ADJICLK Due to variations in components during manufacturing of the
instruments, the clock may gain or lgse time. A compensation
value is stored in EEROM and this word allows a user to adjust
the value. For example, if the clock were gaining 5 seconds a
day, the user would enter:



CLK.

KEYCLK

GETDATE

SETDATE

or

DATE.

KEYDATE

~5 ADJCLK

Prints the current time as an eight character string on the
terminal.

Waits for the user to enter the current time on a terminal and
echoes the values entered. The following example prints a
prompt and waits for a user reply.

NL ." —=:e-:=-" CR KEYCLK

Returns the date as three values on the stack. The following
example would print the date in the order - day, month and
year.

GETDATE . SPACE . SPACE .

Uses three values on the stack to initialise the date. The
following example sets the date to 25th December 1986. The
date algorithm ignores the century value if it is entered.

25 12 1986 SETDATE
25 12 86 SETDATE

Prints the current date as an eight character string in the
order: day, month and year.

Waits for the user to enter the current date on a terminal and
echoes the values entered. The following example prints a
prompt and waits for a user reply.

NL ." dd-mm-yy" CR KEYDATE

5@




i
4
A

4.14.6 Summary of Special Microsupervisor Words

Word

GETEXT

SETEXT

GETDI

SETDO

GETDS

SETDS

LINE

LFMT.

RFMT.

TAG."™ ab"

TAG.

GETCLK

SETCLK

ADJICLK

CLK.

KEYCLK

GETDATE

SETDATE

DATE.

KEYDATE

Stack notation

(In Pn -- n Q)
or (In Pn -- f)

{n In Pn -=- f)

(Cn == f)
(f Cn == )
( --n

(n == )
(n ~- f)
{n ==

(nl n2 -- )

{(nl n2 -~ )

{(n}l =--)

{ -- sec min hr)

(hr min sec -- }
(nl -- )
( --)

( ==

( -- yr mon day)

{day mon yr -~ )

Description

Return data n from instrument and parameter.
The flag describes any error conditions.

Store value n to instrument and parameter.
The flag describes any error conditions.

Return flag describing the digital input status.
Set or clear digital output Channel.

Return the status of the 8 digital inputs.
Modify the status of the 8 digital outputs.
Return the status of front panel switch n.
Select serial line n for input and output.

Print nl as a left justified number with n2
digits after the decimal point. (0 <= n2 <= 4.)

Print nl as a right justified number with n2
digits after the decimal point. (0 <= n2 <= 4.)

Prints the string ab on the tag display.
The " character terminates the string.

Print the value nl on the tag display.

Return the time as three values on the stack.
Set the time from the three values on the stack.
Compensate for clock gains of nl seconds per day
Prints the time as hh:mm:ss

Waits for the user to enter the time, and
echoes the characters entered.

Return the date as three values on the stack.
Set the date from the three values on stack. .
Prints the date as dd-mm-yy

Waits for the user to enter the date, and
echoes the characters entered.

Table 5.14.6 Special Microsupervisor words




Error condition flags from GETEXT.

Code Meaning
-1 Communications time out.
0] Good data.
1 Instrument number not configured in data base.
2 Pseudo instrument parameter number error.
3 Pseudo instrument bad data base error.

Error condition flags from SETEXT.

Code Meaning
-1 Communications time out.
0 Good data. : =
1 Instrument number not configured in data base. .
2 Pseudo instrument parameter number error.
3 Real instrument invalid reply (eg NAK).

H
i



Weplilizioad

5y
i
i
3
-3

4,15 Debugging Facilities

To assist in program debugging, a trace feature can be enabled either

in immediate mode, or from within a program.

When the trace is enabled, each time a user word is completed the

word name is printed on the terminal, with a list of all

the stack.

the data on

The stack items are printed (non destructively) with the top of stack

item printed first, at the left of the display.

Operator Stack notation Description

TRA-ON ( -~} Turn trace option on.

TRA-OFF { -~ ) Turn trace option off.

Table 4.15 ODebug Words




4.16 Reserved Words

Apart from the words in the fixed dictionary, there are some words
reserved that define the program installed and executed at power up.

4.16.1 The 6433 MAIN Program

When a 6433 is powered up, the program stored in the EEROM is loaded
into RAM. The software in the instrument will then search the user
dictionary for a word called MAIN. If this word exists, the program
will be executed automatically.

The same effect can be obtained by executing the words RECALL and
MAIN at the terminal during a programming session.

4,16.2 Advanced Controller Programs

When an Advanced Controller is powered up, the program stored in the
EEROM is loaded into RAM. The Advanced Controller can then load up to
three programs. The names of these programs are selected in
parameters L1, L2 and BG in the General Purpose Block.

The same effect can be obtained by executing the words RECALL and RUN
at the terminal during a programming session.

4.16.3 6445 Microsupervisor BGRND Program

The Microsupervisor is the same as the 6433 but the stored program is
executed when the word called BGRND is found in the user dictionary.

4.16.4 The ERROR Program

If a run time error occurs in the background program, the software in
the instrument will stop the current background program, and search
the user dictionary for a word called ERROR. If this word exists the
program will be run auvtomatically.

The programs are considered to be "running" when the background
pragram enters a BEGIN ... REPEAT or BEGIN ... UNTIL structure.

1
|

S aedt

Sl




':i

PERSEN

Biassais

R

g o i st

iy

1

3

x
i

RN

4.17 Error Messages

This

section lists the error messages that could occur during

programming session and gives more details about the causes.

1.

10.

11.

12.

13.

14,

i5.

16.

Matching pairs - Some words must be used in pairs, e.g.
DO ... LOOP, IF ... ENDIF, : ... ; . This indicates one
half of the pair is missing.

Compiler output buffer overflow - This indicates there is
not enough memory to compile a word.
To overcome this, split the word into smaller modules.

Terminal input buffer overflow - Indicates there are too
many characters in a word.
To overcome this, split the word into smaller modules.

Data stack overflow -~ Attempting to put too much data
on the stack.

Data stack underflow - Attempting to remove data from
an empty stack.

Attempting to edit a FIXED word - User tried to
modify a word fixed in PROM.

1/0 board type - Incorrect data base access routine
used for an input/output board.

LOCAL VARIABLE argument out of range - Incorrecﬁ
argument used for GETARG, SETARG, GETRES, SETRES.

TIMER argument out of range - Attempt to access a non-
existing timer.

ARG/RES argument out of range -~ Incorrect argument for
the ARG or RES words.

1/0 Bn out of range - Illegal block or board number
used.
1/0 Cn out of range - Illegal channel number used.

Undefined or forward referenced word - Attempt to
reference a non-existent word, or a word that is not
deeper in the dictionary.

I1/0 Pn argument out of range - Illegal parameter
number used.

User dictionary empty - No words in the user dictionary.
Memory corruption - The user program memory is corrupted,

the program may have to be re-entered, or there is a memory
fault.



17.

18.

19,

20.

21.

22.

23.

VARIABLE argument out of range - Attempt to access a
non-existent variable.

1/0 Write protected - Attempting to write to protected
parameter in the data base.

1/0 Board hardware - Attempt to access a faulty board.

User memory not available - Insufficient space in the
dictionary for the current word.

Missing ARG statement - No ARG used in the current word.
Illegal word use - The word is used incorrectly.

Task argument out of range - Incorrect argument for time
scheduled program.

3

i i

Yot

Wldaogin

iy
i
1
it




Section 5

Programming Terminal Utilities

-
5
]
el

Bl

i
i
i
o

This section provides technical details of the serial interface from
the front panel of the instrument. It is intended for people who want
to produce a programming terminal using their own personal computer.

If you are using a computer with a TCS application VDU program, then
the procedure for saving and loading a program is explained in the

appropriate manual.

5.1 Front Panel Electrical Specification

The port on the front panel provides a standard serial link:
Transmission standard RS232/v24 (+12 Volts)

Character length 1 start, 7 data, 1 parity (even) + 1 stop bit
(2 stop bits at 110 baud)

5.2 Normal Operating Mode

A VDU can be wused in place of the normal hand-held terminal to
inspect and modify the parameters in the data base. When using a VDU
in this mode the following keys are used to move the cursor or load
the data:

Enter a positive or hexadecimal number
Enter a negative number

Backspace the cursor

Scroll to the next parameter

Reset display to the ?? CMD prompt

N X o X I

The instrument transmits standard ASCII printing and control
characters to the VDU. In addition the following control characters
have a special function:

TAB This character is used to move the cursor forward 1 position.
US LF These two characters are used to reset the display.
When a wuser logs on, the instrument behaves in the normal way,

echoing and transmitting characters to update the display on the
screen.



5.3 Saving a User Program

This mode allows a user to save a program from an instrument as a
text file. This text can be archived and loaded into the computer at
a later date.

The program is transmitted one word at a time, and the text
transmitted «contains additional space, carriage return and line feed
characters to provide some structure to the program.

In the save mode the instruments support the XON-XOFF protocol.

7o save a program, the user must be logged on to the instrument.

The save is initiated by sending an ENQ character to the instrument.

The instrument will then send one word, preceded by an STX character
and terminated by an ETB character.

The instrument will then wait for another ENQ character before
sending the next word. If the instrument receives a character other
than ENQ then it automatically exits the save mode.

To indicate when the complete program has been sent, the final word
transmitted from the instrument is terminated by an ETX character
(not an ETB).

3
|
]

e

i
|
&




i

B resicrid s

e

i
H
1
e

5.4 Loading a User Program

This facility allows a very flexible format for the text files
containing the program.

When the file is loaded, tontrol characters such as carriage return,
tab and line feed are treated as spaces; this means that the text
file can be structured to make a program more comprehensible.
Comments can also be included in a file provided they are enclosed in
ordinary brackets. As the instrument receives the file, it discards
redundant characters and comments so that they do not waste space in
memoTy.

To load a program, the user must ‘have 1logged on to the instrument,
and deleted wunwanted words. Programs can be appended to existing
words in the user dictionary.

The computer transmitting the program must support the XON-XOFF
protocol.

The load is initiated when the instrument receives a STX character.
This switches the instrument to load mode so that characters received
are not echoed back to the computer.

The text file of the program can then be transmitted.

The text should be followed by the ETX character to switch the
instrument out of load mode.

As the program is loaded, it is checked for errors, and codpiled into
the wuser dictionary. If any errors are found, the instrument exits
the load mode, and transmits an error message.



il
Alidad)

sl

INDEX OF WORDS DESCRIBED IN THE MANUAL

Word Section
" 4. 4.3
# b, 4.3
$ 4. 4.3 ]
%GET 4.14.4 ;
%SET 4.14.4 o
¥REMOTE 4.14.4
» 4, 3.3
+ 4. 3.3
+LOOP 4.13.3
+TIM 4.10.3
- 4. 4.3

4. 4.3
o 4. 4.3 "
/ 4. 3.3 |
o P i
0= 4. 9
0> 4. 9 ?1
: 4. 5.4 i
- 4. 5.4
< 4. 9 o
= 4, 9 3
> 4. 9 :
20UP 4. 6.2
?F 4.14.6 })
ABS 4. 7 j
ADJCLK 4.14.6
ALARM 4.14.4 ﬁj
AND 4. 8.2 id
ARG 4. 6.2
ATAN 4. 7 |
ATAN2 4. 7 b
AWORDS 4, 5.4 o
BEGIN 4.13.3
BS 4. 4.3 !
CASE 4.12.3 A
CLEAN 4, 5.4
CLK. 4.14.6 A
cos 4. 7 4
CR 4. 4.3
DATE 4.14.6 :
DIFVAR 4.10.3 e
DO 4.13.3 i
DROP 4. 6.2
DUP 4. 6.2 =
E 4. 7 =
ELSE 4.12.3
ELSOF 4.12.3 "
EMIT 4, 4.3 ?
ENDCASE 4.12.3 o
ENDIF 4.12.3 :
ENDOF 4.12.3 3
EXP 4, 7 i



5y
pid
i
£

o
i |

]
waid

FILTER
FORGET
FWORDS
GET
GETAN
GETARG
GETBCN
GETCLK
GETDATE
GETDEL
GETDI
GETDIG
GETDS
GETEXT
GETPAR
GETREP
GETRES
GETTIM
GETVAR
HALT

I

IF
INSERT
INT
KEY
KEYCLK
KEYDATE
LEAVE
LF
LFMT.
LINE
LN
LOOP
MAX
MID
MIN
MINUS
MSCONT
NEW

NL

NOT
NUMBER
oF

OR
OVER
PI
PICK
PID
PIDX
RATIO
RECALL
REMOTE
REPEAT
RES
RFMT.
ROLL

—

b

Rl e T I e
BPUWHWEWWNPRPRNOOACODNONPEOARORNNE P B

P

.
.

.

. . .
I e

.

-
OO W O

L d
A~ NN VENNNNUWNEREPRPEPULRPEEEEISVOVNNUYRFPOORRSEDEDDSEDDPEDDEEOD B0

N ONNWE B B

W

- .

(=)

—
N N N W e

.
.

—
=
B

T
B ONWEWME B

PR R T - T R R - T S R S T R T - - R S T~ T - L R - R S - R A R R I O
L

4.14.4



ROT 4,
RUN 4.14
SET
SETAN
SETARG
SETBCN
SETCLK
SETDATE
SETDEL
SETDIG
SETDO
SETDS
SETEXT
SETLN
SETPAR
SETREP
SETRES
SETTIM
SETVAR
SIN
SPACE
SQR
SQRT
STORE
SUMVAR
SWAP
TAG.
TAG.™
TOTAL
TRA-QF
TRA-ON
ULISTY
UNTIL
UWORDS
WINDCW
XOR

.

4.14.4

E PR EPEEEE
— —

.

. P .
- = e —
=

. “ % e ® e 8 e B w &y

WWRNPRNEPEAANOOGNSTOONNND DN

\*}

.

4.14.6

PRGN W e

= b e

.
.

[
@V UE PRV NOOCOOE SRS R

.
.

PP PRPPPRPRPEPPRPRERERERREPERPREERERREEDREED
—

.
N W s W

:
A



APPENDIX 1

8261 Data Base Configurator

Interconnection Cables

il e

il
A
i

-
:






]
1
!

fETTY AR g et pTeeg %

AUPENDIN A EPSQON RICRUCOMPINTHER T
GENERAL DRAWING PRACTICE TO BS 308/BS 3939 Sg DATE
DO NOT SCALE THIRD ANGLE PROJECTION 1 1154035
e I o
| L =
| r“"“—'|
ov joTT T T e e e e e e e g O !
| SIGNAL GROUMND (YELLOW) [,
RCV{-ve)i]:]I—— — e .
3
RCV (+ve) | RS232 TRANSMITTED DATA (RED) | &
"“”’"“ib: RS232 RECEIVED DATA (BLUE) _ JRTS| ¢

e o S e wm et G e e mam m— ceman e m— m—

(YELLOW)

NC (GREEN)

(RED)
AN
7] {BLUE)
— REAR VIEW —
7600 BIN TERMINAL CONNECTIONS
43 MIN LENGTH 25mm
LENGTH 25mm 2
) Z 7
45 7 7
— FRONT VIEW —
LENGTH 2S5mm
_NOTE: DIMENSION U DENOTED BY SUFFIX NUMBER WHICH 15§
INCREMENTED 8 001 FOR EACH METRE LENGTH.
DEFAULT LENGTH IS 3 METRES.
k "ARROW  ON OUTER PLASTIC SHROUD MUST 8E N LIME WITH MOTCH.
ORWN 1, 1\ | MATERIAL SCALE  DIMS.iN M.M.AFPLY OVER FINISH
{EXCEPT FOR PAINT AND LACQUER]
CHECKED o NTS X -=+04
: GENERAL XX - to-zl HOLES < & Tmm
DESIGN ASSEMBLED TOLER CE XXX - o} -002 «0Q)
APP}'IOVAL'& FINISH ON = Lt Bk
- TITLE
MANF, 8271
APPROVAL NFE) INTERFACE CABLE, EPSON PX-8
TO IL.STRUMENT RS422 PORT
TURNBULL
'_r' =) EONTRDL E@ DRAWING  ~UMBER Tewr A
—J =4 SysTEMS LTD LA 076706 Cowas !




bWl

EPSON MICROCOMPUTER 1O REF22 0N AnBGREMELY

APPERDTN B

GENERAL DRAWING PRACTICE TO BS 308/BS 3939 S| DATE
DO NOT SCALE | THIRD ANGLE  PROJECTION 1 [25:985
ol
_F L T
T ) oo e [T
: E | SIGNAL GROUND (YELLOW ) |2 | ;
| B | RS232 TRANSMITTED DATA (RED) 12
\F.! RS 2% Recieveo oama (sLue) [RTS!' ¢ |
vy N, GREEN fc1s |, 5 !
D | T T TS T T T I 6 |
t—... i et : B
[ ]
', 3 o
| : I
L ]

{(TO TERMINAL)
PLI {YELLOW)

s @ Q (8]
¢ ~Y) NG (GREEN)
@ ¢ O o lD
Fl OB (RED) :
(BLUE ) j

—— REAR VIEW —

o it

Aocf)l:!-:q; HO - : /
(@' 5000 20 ©) Z
R v

— FRONT VIEW —

* NOTCH

NOTE: :
DIMENSION ‘L' DENOTED BY SUFFIX NUMBER WHICH IS o

INCREMENTED BY 001 FOR EACH METRE LENGTH.
*'ARROW' ON QUTER PLASTIC SHROUD MUST BE IN LINE WITH NGTCH.
CEFAULT LENGTH IS 3 METRES.

DRAWN -\ | MATERIAL SCALE  DIMS.INM.M.APPLY OVER FINISH
{EXCEPT FOR PAINT AND LACQUER}
CHECKED N.T.S. X -=tr04 _
as GENERAL XX =+ o-zl HOLES < 2 Tmm
DESIGN U_Q,_..r FINISH ASSEMBLED |TOLERANCE XXX = £ 01| -002 + 007
TITLE
MANF. P&
APPROVAL |V INTERFACE CABLE EPSON
—— TURNSULL P X-8 TO HHT. INPUT SQC:(ET
- P DRAWING NUMBER bewt 1
_r' ) CONTROL Es v R
SYSTEMS LTD LA 076644 C /a3 | 0o
i




i
o
&
ol
L)

L
i

APPENDIX 2

6433 Instrument Parameters

II, SW, MD and those instrument parameters relating to the Input/Qutput
Blocks can be accessed from each of the board types.

For real blocks 1 to 4 parameter numbers 1 to 8 refer to Sl to A4
inclusive.

For pseudo blocks 5 to 8 parameter numbers 1 to 8 refer to S5 to A8
inclusive.

The following Tables list the parameter types and numbers.






]
o
1

CHAN

CHAN

CHAN

CHAN

CHAN -

CHAN

CHAN

CHAN

CHAN

CHAN

CHAN

CHAN

0

8
1 16
2 24
3§ 32
4 40
S 48
6 56
7 .64
8 72
1-2 80
3-4 88
5-6 96
7-8 104

0 1 2 5 4 5 6 7
s1 al s2 A2 S3 A3 sS4

I1 | S5 AS S6 A6 S7 A7 S8

A4

A8 sWw | MD

sT* | HR* | LR* | HA* | La* | Pv* | AR*

ST* | HR* | LR* | HA* | LA* | PV* | aR*

st | HR* | LR* | Ha* | La* | Pv* | ar*

ST* | HR* | LR* | HA* | La* | Pv* | aRr*

sT* | HR* | LR* | Ha* | LA* | pv* | ar*

sT* | HR* | LR* | HA* | La* | pv* | ar+
] : E

ST* | HR* | LR* | HA* | LAa* | PV* | aR*

ST* | HR* | LR* HA LA* | PV* | AR

T1L | T2 T3 T4 1 2 | T3 T4

v frz (o3 (o Jma |22 |2 | ma

TL | T2 T3 T4 T1 T2 T3 T4

T1 | T2 T3 T4 T1 T2 T3 T4
List of 6433 Parameter Numbers, [PNO]s,

and their respective mnemonics for

pseudo-Analogue Input Boards

TABLE 1

(4)



S1 Al S2 A2 S3 A3 54

0 Il S5 AS S$6 A6 S7 A7 58 (4)

A4
8 A8 SW MD (4)
CHAN 1 16 ST* HR* LR* op* HO* LO*

CHAN 2 24 ST* HR* LR¥* op* HO* LO* ﬁﬁ
;;:i‘:;
CHAN 3 32 ST* HR* LR* op* HO* LO* =
)
e

CHAN 4 40 ST* HR* LR* Op* HO* LO* | j

- o ot

" CHAN 5 48 st* | HR* | LrR* | op* | HO* | Lo*

CHAN 6 56 ST* HR¥* LR* Oop* HO* LO*

CHAN 7 64 ST* HR¥ LR* op* HO* LO*

CHAN 8 72 ST* HR* LR* op* HO* LO* i

CHAN 1-2 80 T1 T2 T3 | Ta T T2 T3 4

CHAN 3-4 88 | T 2 | T3 T4 | ™ | T3 T4

CHAN 5-6 96 Tl T2 T3 T4 Tl T2 T3 T4

CHAN 7-8 104 Tl T2 T3 T4 T1 g T3 T4

List of 6433 Parameter Numbers, [PNO]s,

and their respective mnemonics for real

and pseudo-Analogue Output Boards

TABLE 2



sl Al | s2 a2 | s3 A3 S4
0 II | S5 AS | S6 A6 S7 A7 58 (4)
A4 : -
8 a8 | SW | D (4)
CHAN 1-8 16 | ST* | aM* | Dps*
24
32
40
48
56
§
64
" 72
CHAN 1-2 80 | TL [T2 | T3 |[Ta {71 |[T2 [T3 | T4
E CHAN 3-4 88 | TL | T2 | T3 | T4 | TL [ T2 | T3 | T4
i CHAN 5-6 96 TL | T2 T3 T4 AEL T2 T3 T4
i
o CHAN 7-8 104 | T1 | T2 | T3 | T4 TL | T2 | T3 T4

; List of 6433 Parameter Numbers, [PNO}ls,

and their respective mnemonics for real

and pseudo-Digital Input Boards

TABLE 3



CHAN 1-8 16
24
32
40
48
56
64
72
CHAN 1-2 80
CHAN 3-4 88
CHAN 5-6 96

CHAN 7-8 104

- (4)

0 1 2 3 4 5 6 7
S1 Al 52 A2 S3 A3 S4
II S5 | A5 S6 A6 S7 A7 S8
A4
A8 SW MD
sT* | AM* | ps*
4
1 | T2 T3 | T4 T1 T2 T3 T4
Tl T2 ™3 | T4 T1 iiz 73 T4
T;- T2 T3 | T4 T1 T2 T3 T4
1 T2 3 | T4 | T1 T2 T3 T4

List of 6433 Parameter Numbers, [PNO]}s,

and their respective mnemonics for real

and pseudo-Digital Output Boards

TABLE 4

(4)




Block Block |Block |Block | Reltv | Parameter Number
Description {Mnnic|No. |Type [Block| ® | 1 [ 2 |3 |4 |5 |6 |7 |8 |9 |A|B|C|D]IE |F
- & %
General 2 o
Purpose 1P | 0 | 0 | 1 [sT|n [Ll |L2 |BG |SW |PB c S
1 1 [ST [HR[LR [Al [AV 3 >
,‘,‘1‘;‘:}{’9“9 At [ 2 |1 [ 2 st |HR]LRIAI [av = -
3 3 |[sT [HR|LR [Al |AV 3
| Analoguea/P[ A0 | 4 | 2 1 [sT [HR LR |HL |LL |AO o
Digital Input | D1 5 3 1 |ST |XM |DS §
Digital O/P | DO 6 4 1 |sT [wM|DS
Setpoint 5p 7 5 1 _IST [HR [LR [HL {LL [PV |SP |[ER |SL |SR [SB [RL [HA [LA [HD |LD
8 2 |ST [HR |LR HL |LL |PV |SP |ER |SL |SR [SB |RL |[HA |LA |HD [LD
. 9 1 |ST {HR |LR |RS |RT |RB
Ratio RB 61 ® [2 [sTHR [LR |RS [RT |RB
11 1 ST IXP |T1 |TD |FF |FB |OP [TS
PIDControl 13T =5— 7 5 [sT [xp [T1 |TD [FE [FB [0P [T5
Manual 13 1 [ST {HV [LV {HL [LL {AO |OP |OT
patpul MS 271 8 2 TsT{Av [LV [aL [LL A0 [OP JoT
Display & |pe |'5 8 1 |st{1B |2B |3B |DD |ES [SM
Control 16 2 ST |1B |2B |3B |DD |ES |[SM
Alarm g LB A |1 [STIHVILV [HL JLL [PV |SP [AH
Block 18 2 |ST |HV |LV |HL |LL |PV |SP |AH
Constants CB 19 8 1 ST 11K |2K 3K |4K |US
Block 20 2 |ST |1K |2K |3K 4K [US
Filter 21 1 |ST XK [1T [2T |FF |F1 |OP
Block il : 2 |ST |xK 1T |27 |[FF [F1 [OP
Delay 23 1 ST |DT
Block P8 22 1P [z fsTioT
Totalisation 8 25 £ 1 ST |FS |FT :
Block 26 2 ST |FS |FT







