
PROGRAMMABLE INSTRUMENTS
PROGRAMMING MANUAL

Prepared by: DP/RWP

EU RO THERM P ROC ES S AUTOMA TION LI MITED

EU ROTH ERM
PROCESS

AUTOMATION

Issue D

January 1986

SOUTH D OWN VI EW W AY , WOR THI NG , W SU 5SE X oN14 8N N TELEPHONE 0 903 2 0 52 7 7 FAX 0903 2 3 39 02 TE LEX B7 ,\ 3 7

Turnbull Control Systems Ltd. reserves the right to make
specification changes at any time without notice, in
order to improve design and supply the best equipment
possible.

Turnbull Control Systems Ltd. cannot assume any
responsibility for any circuits or system schematics
shown. All applications information contained herein is
intended solely for general guidance and use of
information for users' specific applications is entirely
at the users own risk.

··1

l ::

.J
'J

.J
'"'1
j

]

_J

PROGRAMMABLE INSTRUMENTS 6433, 6356/66 and 6445

PROGRAMMING MANUAL

CONTENTS

1. GENERAL INTRODUCTION

2.

1.1 The Manual
1.2 The Language
1. 3 The Instruments

SOFTWARE STRUCTURE

2.1 6433 functional Overview
2.2 6356/66 Functional Overview
2.3
2.4
2.5
2.6

6445 Microsupervisor
Programming Considerations
Program Memory
Selecting a Program

3. GETTING STARTED

4 .

3.1
3.2
3.3
3.4

Connecting a Terminal
Typing Conventions
Understanding the Stack
Keep Note of the stack

PROGRAMMING THE INSTRUMENT

4. 1
4.2

Introduction
First Step s

4 . 2. l Logging-on
4.2 . 2 Logging-off
4.2.3 Escape Key
4.2.4 Sing le Line
4. 2.5 Have a Go
4.2.6 Summary

Editor

4.3 Intera ction and the Interpreter

4. 3. 1

4 . 3.2
4.3 . 3

Arithmet i c Calculations
Try Som e Arit hmetic
Su mmary

4.4 Terminal Input Output Operations

4. 4. l
4.4.2
4.4.3

Numbers and Print Routines
Character Output
Summary

4.5 Writing a Program

4. 5 .1
4.5.2
4.5.3
4.5.4

Creating a Word
Editing a Word
Dictionary Management words
Summary

4.6 Stack Manipulations

4.6.1
4.6.2

Local Variables
Summary

4.7 More Arithmetic and Trigonometric Words

4.8 Logical Words

4.8.1
4.8.2

Examples
Summary

4.9 Comparison words

4.10 variable and Timer Words

4.10.l
4.10.2
4.10.3

Variables
Timers
Summary

4.11 Terminal Input

4.12 Conditional Branches

4.12.l
4.12.2
4.12.3

IF ... ELSE ... ENDIF Structures
CASE ... ENDCASE Structures
Summary

4.13 Loop Structures

4.13.l Definite Loops
4. 13.2 Indefinite Loops
4.13.3 Summary

4.14 Instrument Specific Words

4.14.l Special 6433 words
4.14.2 Summary of Special 6433 Words

·.'···1 . . ,
· ,_,_ .. ;

, . · ~·, 1

.·. · 1

,_,}

4. 14. 3 Special Advanced Controller Words
4. 14. 4 Summary of Special Advanced Controller Words

5.

4 . 14 . 5 Special Microsupervisor Words
4. 14. 6 Summary of Special Microsupervisor

4.15 Debugging Facilities

4.16 Reserved Words

4.16.l The 6433 MAIN Program
4.16.2 Advanced Controller Programs
4.16.3 6445 Microsupervisor
4.16.4 The ERROR Program

4.17 Error Messages

PROGRAMMING TERMINAL UTILITIES

Appendices

Appendix 1 Interconnection Cables

Words

App-endix 2 Binary Protocol Parameter Numbers for the 6433

Appendix 3 The Functional Blocks for the Advanced Controller

1. GEN ER~L J NI RODUCTI ON

1.1 The Manual

J~ ~~~sTC;a~~:!emi~~~~d~~~:ra~::bi:oi~:~;~:;n~:~hniques associated with

".C·.1.
I

.:. ~J

.··• ·~

. ·~ ...
~:..l

.,.,,1

6433
6356/66

Programmable Signal Processor
Programmable Advanced Controller

The text assumes that the reader has a working knowledge of the
System 6000 intelligent instruments, specifically

6432
6350/60

Signal Processor
Process Controller

Before attempting to create programs for the programmable
instruments, it is recommended that the reader refers to the 6432,
6350/60 Technical Manuals.

The Programming Manual is written in two sections:-

Firstly A tutorial to allow a beginner to start to
perform simple routines.

Secondly - A reference section to provide the more
experienced programmer with a check list of
the instrument functions.

1.2 The Language

The System 6000 programmable instruments are programmed in a version
of the "FORTH" * language developed by TCS specifically for use with
these instruments.

TCS FORTH differs from other standard FORTH implementation in that:-

(a) It is considerably simpler and does not require
features such as disk file I/O.

(b) It handles numeric data exclusively in floating
point format, thus removing the need for the
programmer to consider binary point positioning.

the TCS FORTH implementation and provides
the use of the language . Appendices show
applications program for a typical process

The manual describes
examples relating to
examples of a documented
control problem.

* FORTH is the registered trademark of Forth Inc.

Readers who already have programming expe rie nce (not necessarily in
FORTH) should find the manual sufficient. Readers who have no
previous software knowledge will probably find it beneficial to
refer to a standard introductory text on FORTH . This will provide
an introduction to the programming concepts of the language making
the implementation described in this manual more mea ningful.

1.3 The Instruments

The programmable instruments are based on the hardware of the
exist~ng configurable instruments as follows:-

6433 based on 6432 Signal Processor hardware

6356/66 based on 6350/60 Single Loop Process Controller

6445 Microsupervisor - an extension of the 6433 Signal
Processor

The programmable instruments include all of the features of the
configurable instruments plus the TCS FORTH package that allows
arithmetic and boolean computation and display assignment.

The programmable units extend the monitoring and control facilities
of the configurable instruments by providing features necessary for
batch and sequence control and interlocks. As well as "analogue"
calculation and logical manipulation, timing and counting functions
suitable for sequencing applications are included. Timing functions
are carried out to a precision of 2 milliseconds under con t rol of a
real-time clock.

The input/output capability of the instruments is as follows:-

6433 - 4 blocks of 8 channels where the blocks may be
analogue or digital inputs or outputs.

6356/ 3 analogue inputs, 3 analogue outputs,
6366 - 8 dig i tal inputs, 8 digitals ou tputs.

6445 - 5 serial lines, 8 digital inputs,
B digital outputs.

The 6433 provides an additional 4 blocks of 8 pseudo channels which
ma y be used for internal derived variables. Th se are accessible
from the front panel and via the hand-held programming terminal or
vi a the serial link in the same way as the real input/output
channels, and would typically be used to display the results of
calculations, status and to set internal constants .

The 6356/66 i nc lude 8 constants plus two 8 bit status words that may
be used to store intermediate value s as above . The constants may be
assigned to t he front panel display and are accessib le via the
hand-held programming t erminal or the serial l ink.

·~ 'l
..

'

··.·.".··1
.·.· .. ,

.J
J

.. .. i

I
..... l

I
. .. ,I

.J

'.n . .-;·.··)

;~~J

"'i
:1
I

..... J

Programs are developed in RAM using an RS232 "Teletype" compatible
device such as a VDU plugged into the front panel socket.

A program developed in RAM can be "fixed" into ROM from the
programming device. The program is, however, always run in RAM and
this allows programs to be loaded in RAM, edited and then debugged
before the original program is replaced.

rull program edit and load/save facilities may be obtained using the
BBC 'B' or Epson PX8 computers .

~-------- OATA

.._._R_S_t_1_1 __ ., SUPERVISORY

S(Rl .. l / 0ATA LINK

CO><MS

.---------1 IPIPUT I out PUT
SCANNINC.

BASIC 6432 FACILITIES

PLANT INPUT/OUTPUT
.lHAlOGUf: l/IPUTS

I II.

·' . AN>.LOGU!'. OUTPUTS
· .. "' :. . , ,;.

k~:fi::~;_
PSEUDO INPUT/OUTPUT

,l!IAlOGUE MOlllTORll!C.
<•>

OPERATOR SET POINTS
.111

STATUS MOlllTOIUH(,
Ill

OPERATOR CONTROL
(I)

ID!U
,.------.-i ~S~fE~ANCE

ROUTINES

ll<STRU><Ellf
l'ARAMUERS

81.0CK I

---;:;;:ml'UT *
SlOCK 1
"A'N.'OUTM ll

BlOCX l
~PUT*

BLOCK'
~UTPVT*

UlOCK 5

""'AH:iNPut •

BlOCK S
Alt. OUTPUT*

~ l DIC., OUTP\IT ll
I

·,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I : DATA BAS£

I ~---~
I
I
I
I
I

VARIABLES

""
: TIMEl\S
I (16)
I
I I .. _____________ J

PARAMETER MEMORY
(BATTERY BACKED RAM)

I I
I I

RUl·TIM£
MU. Tl• lASKINC.
UECilllVE

STACK

•NOTE: ANALOGUE AND DIGITAL INPUT/OUTPUT CARDS
ARE SHOWN IN A TYPICAL CONFIGURATION:
ANY COMBINATION MAY BE SPECIFIED.

Fig 2.1

1m~c.
noco<.

FIXED WORDS
DICTIONARY

lllERM!;t.
INSTRUCTIONS!

r------ ----,
: USER WORDS
: OICTIOIU.RY
I (APPLICATIONS
: PROGA.lMJ
1 41\ RAM i ------ -
I
I

: UI [£PROM I

L------------1
PROC.R,t.M MEMCRY
I RA>I/ E£PR0"4l

HANO· HELO
COllF:c;t,;IUTIOll
TERMIMAL

v.o.u
PROG.:tA.-:•G
T[RMIN .. L

6433 PROGRAMMABLE SIGNAL PROCESSOR
FUNCTIONAL OVERVIEW

".' .. '.'i·
:;:r

. ! ; ~~

'"--.·.! '< t
:;.,:J-

. ,.J

, }

!

~
. . ,J

1

j

2. SOFTWARE STRUCTURE

2.1 6433 Functional Overview

The heart of the 6433 is the data base as shown in the functional
overview of Fig. 2.1. This holds the instrument parameters and
channel parameters for the 4 blocks of B real input/output
channels as for the 6432. In addition it holds the parameters for
the 4 blocks of 8 internal or pseudo channels.

This data base is scanned continuously and up-dated with the
values of real inputs or computer values; output blocks are
up-dated with new values if a change has taken place to the
relevant values in the data base. All values are available for
display on the front panel under the control of the pushbuttons.

As in the 6432 instrument, values may also be accessed via the
data communications task. In normal on-line operation this
services the RS422 serial link. However, plugging in a
programming terminal disables the RS422 link and transfers control
to the RS232 front panel socket which may be used for either the
hand-held terminal or a teletype compatible console such as a VDU.

Also held in the data base are current values of the 64 variables
and 16 timers. variables are stored in 32 bit floating point
format. Timer values are stored as 32 bit numbers with l bit
corresponding to 2 milliseconds, giving a range of + 4,294,960
secs. or about 7 weeks.

User programs are written in a high level interpretive language
based on a version of FORTH. Program statements are called
"Words" and these loosely correspond to sub-routines. A kernel
set of the most common functions are resident in ROM in the "Fixed
Word Dictionary".

These comprise the common arithmetic and boolean operators,
input/output routines, etc. The user then builds up a program by
creating a hierarchy of user words in which both user-created and
fixed dictionary words may be nested and strung together. The
user words are added to the "User Word Dictionary".

Program words operate on one or more values on a data ''stack".
New values are put on to the top of the stack and push down old
values. They are picked off on a first-in last-out basis so that
program statements operate in a "Reverse Polish" format.

The front panel RS232 socket supports two terminal modes. The
first is Command Mode which provides the normal access to
configuration parameters via 2 character mnemonics. The second is
Programming Mode which provides access to the FORTH editor for
entering and modifying programs. This mode is protected by a
secu rity number associated with a user name.

6356/6366 Programmable Advanced Controller Functional Overview

AHAlCO IH;>\JT\
!l)

&N~-OG C\JTP'.,;f
Ill

Cel<T•l INPUT\
181

DIGITAL Oil f P!JT\
111

,---, ----,
I 1r<StRU"E''
I P•A•Mt!tRS

,,_,,.,..,.,.,......, "-I .lN.a\OG Uo&PUT
,.._...,_...-...-,fl 9lCCK

.uw.cGcur:>ur
..... .;.;;..:.;.;;=r-.talCCK

1-------1

J>---"'.·.-·.,"": .-.• -tc1G1U.\. C\JT?tlT
v-----...-19LCClt

1------t
SEll'CiNI
cEar,.ri::,. r11

AA.TIO
OEl!rl.lllO~ I! l

PIO BlCC~\

cu

Ill

\[AO/ \AC Ill

Vt\l(R 121

OOD l"'t
DC\..lil' 9\~lll

!!I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
J
l
I
I
1
I
1
I
I
I
I
I
I
1

L--- ----...J PAR.a.M(f £:.).1("'4c,A't
i 9J,.rt(R'f S,..Ci(tO A-"""1
!tU BT w r.

Fig. 2 .2

llN(\0-Et.\.U~
~R PROCR.u4
u

B•CXGRC~'HD
U\(R PRl)~A.u4
8~

FIJU
,l;'P\l(.lf!GN';
\.leRNIY

YAill4Blt\

ll><(R!t

PIO
ARJTl<HETIC
D•f>8>~

fC!t
CONFIG\JRAl(:N\
Ll,ll , 8C

~a
CCHfl~R•fCN\
ll~ U, IG

.. ,
· .. I

:_,;_.~

. •::~ .
::f

,.J

.{

.l
.. J

"'')
·i

BLOCK 3
DIG IN

TASK 1
DATA
COMMUNICATIONS

TASK 2
SYSTEM
MAINTENANCE
ROUTINES

REAL TIME
MULTI-TASKING
EXECUTIVE

BACKGROUND
HIGH LEVEL

._---+--tLANGUAGE

INSTRUMENT
PARAMETER
OAT ABASE

I BATTERY .
BACKED RAM)

6445 MICROSUPERVISOR

FUNCTIONAL OVERVIEW

INTERPRETER

STACK

! Fig 2. 3
·-~-l

{
).

- t

' ,
l

.. :.J

____ R_S_t.._2_2 _______ SUPERVISORY

•

2M SEC
----1CLOCK

VARIABLES
(64 I

TIMERS
(16 J

DATA LINK

IRS232·/_·----- PRINTER TERMINAL

- -· OPERATOR TERMINAL

DISPLAY

FIXED WORDS
DICTIONARY

I KERNEL
INSTRUCTIONS!

FRONT PANEL
SOCKET

PROGRAMMING
TERMINAL

USERS WORDS
DICTIONARY
IAPPLICA TIONS
PROGRAM I
SK RAM

SK EEPROM

2.2 6356/66 Functional Overview

The structure of the 6356/66 Controllers is illustrated in Fig.
2.2. It differs from the 6433 in that it includes 3 time
scheduled programs instead of 1. This allows separate programs to
be run for each of the available PID loops plus a background
program area that sets up I/O interlocks, etc.

The instrument communications and tasks are the same as the 6433.

The "Fixed Word Dictionary" has been extended to include a number
of additional words such as PIO, MSCONT, RATIO, REMOTE, ALARM,
etc.

Two further Libraries containing the TCS fixed applications plus
an area to store customer applications programs are also included.

The program structure and the use of the "stack" are identical to
the 6433 above.

2.3 6445 Microsupervisor

The structure of the 6445 Microsupervisor is illustrated in
Fig.2.3.·

The 6445 is basically an extension of the 6433 Programmable Signal
Processor that allows four important advantages.

i) Input I Output Expansion

The 6433 1/0 is limited to the 32 channels of the four I/O cards.

The 6445 1/0 depends on the 1/0 of the instruments connected to the
instrument bus, which may be in excess of 60 analogue channels or 150
digital channels or combinations.*

* N.B. These figures are based on worse case conditions see
calculation in section 3.

ii) Local Task Control I Softwired Configuration

The 6445 provides a low cost and convenient means
interaction between small numbers of instruments.
control has advantages over the supervisory computer
where speed, control security and cost are important.

iii) Increased Program Memory

of self-wiring
The local "task"
tasking package

The 6445 has 8K RAM and 8K EEPROM, twice the memory size of the 6433.

-=_1.
. ' ~

·.-.'.··.1 .:\
)it

'1
' · .. -,../.

' ;
.1

... _i

. I
l

;. .•• 1

,.,1

,J

iv) Local Operator Displays and Logging

Features (i),
Programmable
considerable
involvement.

(ii) and (iii) are direct extensions
Signal Processor and consequently we
e xperience in assessing and costing

of the 6433
now have

engineering.

Feature (iv) is
undeveloped and
quotations .

in the first release
consequently care must

of the 6445, relatively
be taken when making

The two additional RS232 ports allow:-

(a) an additional programming terminal or operator VDU/
keyboard to be connected:

(b) a printer/data logger to be connected.

These ports together with the additional string statements allow data
to be buffered and presented to the display and/or printer by the
FORTH Program.

2.4 Programming Considerations

A stack-oriented language imposes a structured approach to
applications programming. Program statements or "Words" can only
call other routines that have already been defined and are
recognised by the interpreter. This implies "top down"
formulation of the problem with "bottom up" implementation of the
program.

The first step is to define the data base. This will comprise
real inputs and outputs according to the hardware configuration,
and then internal constants or "pseudo" inputs and outputs for
derived values and constants requiring access from the front
panel. It should be noted that the 6433 derived values for
display should be set up as pseudo inputs because this allows the
facility of setting high and low alarms as for real inputs.
Conversely operator-set constants should be set as outputs so as
to allow use of the raise/lower buttons or hand-held terminal for
changing values.

Intermediate results used in more than one place in the program
but not required for display are conveniently set as variables.
This has the advantage of reducing dependence on the stac k and can
allow individual program statements to be more self-contained.

The next step is to draw a flow chart for each independent task.
All tasks residing in the instrument must then be incorporated in
a master loop which performs scheduling; usually it is sufficient
to cycle sequentially through all the tasks and enclos e them in a
BEGIN REPEAT structure . Two preliminar y t ask s are also
generall y require d to set up i niti a l value s o f constants and to
reset tim e rs, counter s a nd fla gs, etc.

The third step is to divide the flow chart into sub-routines of a
suitable size to be defined as program words. It may be desirable
for clarity to restrict word length to one line on the terminal
device, to a length set by the WINDOW operator . Longer statements
can be achieved by stringing together several words. Words should
as far as possible be self-contained.

The final step is to translate the flow chart into code and enter
the program, noting that words lowest in t he hierarchy must be
entered first.

For simple analogue computations a block diagram approach is often
more appropriate than a flow chart. An example is shown in the
Appendix .

Individual parts of the program may be tested at any stage by
executing in immediate mode, simply by typing in the appropriate
Word name.

2 . 5 Program Memory

The TCS range of programmable instruments uses two areas of memory
for programs.

The first area comprises Random Access Memory (RAM) that is used for
developing and running user programs.

The second area is Electrically Eraseable Programmable Read Only
Memory (EEPROM) which is used for archi ving programs. This memory
provides a secure method of storing programs and does not require a
battery when power is removed from the instrument. In addition,
switches or jumpers are provided on the boards to prevent accidental
erasure of the EEPROM .

When the instrument is powered-up, the program in EEPROM is loaded
into the RAM area and this program is then executed. The user
programs in memory are checksummed for secur ity and this is
monitored whilst the program is running .

The EEPROM is also used to store a security name, security code and
a window size that are required whilst programming .

2.6 Selectina a Program

When an instrument is powered up, it must decide which program to
run. The selection of programs varies slightly between instruments.

a} Program Selection for the 6433

The power-up procedure initiates a search through the dicti on aries
for a program called MAIN. If this program is found, it will then
be run, otherwise the instrument is considered to be HALTED and this
diagnostic shou ld appear on the fron t p ane l .

·~ : ~ ·.r

.. J

·~
.. J

]

"'"l
l

,,J

~
l

.... .!

.. J
""]•
:....;.

b) Program Selection for the Advanced Controller

The Advanced Controller allows up to three programs to be run . Two
of these programs are scheduled at times selected within the program
and the third program runs in the background.

To allow flexibility, the user can select which programs are run
using a standard hand-held terminal. This is achieved by setting
the required program names into the parameters Ll, L2 and BG in the
general purpose data block. The programs specified in Ll and L2 are
the time scheduled programs, where Ll has the highest priority. The
program specified in BG runs in the background .

At power-up, the dictionaries are searched for these programs and if
they are found, they are then installed and run.

Changing the names of the required programs in Ll, L2 and BG has no
effect on the programs that are running since these parameters are
only inspected at power-up or when invoked from a programming
terminal.

c) Program Selection for the Microsupervisor 6445

The power-up procedure initiates a search through the dictionary for
a program called BGRND. If this is found, it will then be run,
otherwise the instrument is considered to be HALTED and this
diagnostic should appear on the front panel status display

·····~
UJJ

.:·.' :·'::

' '
·~·.J

Section 3

Getting Started

This section describes the equipment needed to program the TCS
instruments, and outlines some of the documentation conventions used .

3.1 Connectina a Terminal

Initially a programmer requires a programmable instrument and a
programming terminal. The simplest programming terminal is a standard
VDU with an RS232 interface. The examples included in this section
assume the user simply has a standard VDU.

In addition TCS have written applications software to allow a BBC
model B computer or an EPSON PX-8 portable computer to be u5ed as
programming terminals, these computers provide additional facilities
to archive user programs and instrument data bases. (Ref ????)

The first step is to connect the VDU to the Hand Held Terminal (HHT)
socket on the front of the instrument, this should be done using the
lead described in Appendix ?.

The second step is to select the instrument baud rate to match that
of the VDU. The baud rate is selected using Switch Bank 1. With
switch 1 off the baud rate is set to 300 baud, however when switch 1
is on the programmer can select the baud rate using switches 2,3 and
4 in the normal way (see Table :!.I) . Normally whilst programming the
baud rate would be set to 9600 by setting switches 1,2 3 and 4 on.

Finally, check that the terminal data format is set correctly . This
should be:

1 start bit
7 data bits
l parity bit (even)
1 stop bit (2 stop bits at 110 baud)

3 . 2 Typing Conventions

In common with many other manua l s the following conventions a r e used
in this section.

1. Special function keys such as Return and Delete are enclosed in
angle brackets. This indicates that you should only type a single
key, eg if you are asked to type the line

l 2 <Re turn>

then type the two numbers separated by a space and th en the Return
key.

2. Some characters on VDU terminals require the use of more than one
key, eg to type capital letters you would hold down the shift key
whilst typing the required letter. When an operation requires more
than one key it will be written thus:

eg SHIFT-X
CTRL-P

Hold SHIFT key whilst typing X
Hold CTRL key whilst typing P

3. To avoid confusion between text typed by a programmer and messages
from the instrument, all messages from the instrument will be
underlined.

3.3 Understanding the Stack

To understand and use the Forth programming language, a programmer
must learn the concept of a "data stack'', (usually abbreviated to
"stack").

In simple terms a stack is an area of computer memory. Data can be
added or "pushed" on to the top of the stack, when this happens,
existing data is moved down one location. A further feature of the
stack is that data can only be removed from the top of the stack.

For this reason the stack is often described as "last-in, first-out"
(LIFO). As data is pushed on top of the stack, existing data is
pushed further down. As data is removed from the top of the stack,
the last data in is the first data out.

The Forth programming language uses Reverse Polish Notation (RPN) or
post-fix arithmetic, rather than the standard algebraic format.

This has several advantages:

a. The rules are very simple .

b. There is no need for parenthesis.

c. This is the way computers do arithmetic, and it makes the
programs more efficient.

Reverse Polish Notation is simply a way of presenting data and
operations to a computer in the correct order for computation.

Whenever a number is introduced in a calculation, it is automatically
pushed onto the stack. Other operations or programs can modify, add
or remove data on the stack. In the examples below, the contents of
the stack are shown as a list of data, and the top of the stack item
is marked with an arrow.

~~.~.· · ~

.·. ··~

)

... ;;.o.

·i ., .,
I _:-.;

"I
l
I

.. , l

Example 1

Consider the sum (4+5) , this would be written in Reverse Polish as:

4 5 +

The computation steps would be:

Step No Description

1 Stack the number 4

2

3

Example 2

Stack the number 5

+ (Remove numbers and replace
with the sum)

Stack

Top->: 4

Top->: 5
4

Top->: 9

Consider the sum 4*(5+6),in standard algebraic format this requires
parenthesis to ensure that the addition ls computed before the
multilication. This would be written in Reverse Polish as:

4 5 6 + *

The computation steps would be:

Step No Description

1 Stack the number 4

2 Stack the number 5

3 Stack the number 6

4

5

+ (Remove top two numbers and
replace with the sum)

* (Remove numbers and replace
with the product)

Stack

Top->: 4

Top->: 5
4

Top->: 6
5
4

Top->: 11
4

Top- > : 44

3.4 Keep Note of the Stack

It is important to know what is on the stack, and to maintain a
discipline of tidying up the stack when a program has finished.

If you have nothing on the stack, and you try and remove something,
then you will get a "Data stack underflow" error.

There is also a limit to how much data can go on the stack. If you do
exceed this limit you will get a "Data stack overflow" error,
(although it is difficult to do this unless you make some mistakes).

The following notation is often
program to describe the stack status
executed.

(before -- after)

used with the description of a
before and after a word is

The dashes separate the data that should be on the stack before the
operation from the data after the operation .

When there is more than one item on the stack, the item on the right
of the list is the top of stack item.

Eg the notation for the operation + in the previous examples is:

+ (nl n2 -- sum)

where n2 is above nl on the stack before the operation.

·' ... ···1
..

:Z

l
···•j';.;.

, ·1
l

.... .i

.... l

! .,
J

>]
.J

l
.. J

Section 4

Programming the Instrument

4.1 Introduction

This sec tion provides an introduction to TCS programmable
instruments.

The information provided here is intended to guide an individual with
some experience of computing th r ough the first steps in working with
the instruments. As such the approach is intended to be relatively
simple, however, most sections are folowed by a summary so that they
can also be used as a reference manual at a later date .

4 . 2 First Steps

The first step is to find somewhere quiet, connect
the instrument and gain some confidence with
techniques.

your terminal to
the programing

4.2.1 Logging-on

When the VDU is plugged into the front of the instrument the normal
HHT prompt ?? CMO should be printed on the screen. If it does
not, try typing the letter Z. If the ?? CMD prompt still does not
appear then:
N.B. There is no prompt for the 6445 Microsupervisor, simply type
CTRL-P.

1. Check the leads and baud rate on the instrument and the VDU .
2. Unplug the lead from the front of the instrument and then plug it

in again.

When the correct display is shown on your VDU type

CTRL-P

The terminal will now display one of the following two messages:

1. * Please enter your security number *

The programmer should then enter a 3 digit security number.
Entering the correct code will result in the response:

* Hit space bar to change name *

If you want to change the name
then proceed as outlined
response to any other character

* TCS Forth Version 1.(1) *
* Have a nice day *
Free nnn

and security code type a space and
in part 2 below. Otherwise in
the display will show:

Where nnn represent the amount of memory available for programs.

2. * Please Log-on * USER

You should now enter a 7 character user name (including spaces).
When you have done this the instrument will print:

* Your security number is yyy Remember it *
* Hit space bar to change name *

The number yyy is your security code, make a note of this number
as you will need it next time you log-on to the instrument.

If you wish to c hange or correct the user name type a space and
have another go, otherwise in response to any other character the
display will show:

* TCS Forth Version 1 . (l) *
* Have a nice day *
*Free nnn *

Where nnn r ep r e ~ e n t th e amou n t of memory ava il abl e for pr ogram s.

)
: .. :,J

._ ... ,

.J

.,
' .. ;_·j

.... ..,
!

_j

·;
' . .J

4.2.2 Logging-off

The procedure to return to the normal HHT operating mode depends on
the issue of software in use.

Type CTRL-Q to log-off when using TCS Forth Version 1

Type CTRL-X to log-off when using TCS Forth Version 2 & 3

The display should now print the standard HHT response:

?? CMO

4.2.3 Escape Key

Hitting the ESCAPE key whilst programming the instrument will abort
the current operation and print the standard message:

*free nnn•

4.2.4 Single Line Editor

The programs are normally entered by typing a line of text at the
terminal. The editor is always in 'insert' mode, this means that any
characters typed are inserted into the text before the character
pointed to by the cursor •

Naturally everybody makes mistakes, so to alter the text t~e user can
move the cursor forwards or backwards along the line of text using
the TAB or BS (BACK SPACE) characters respectively. To delete a
character move the cursor over the character, and hit the DELETE key.

If you type an illegal character this will ring the 'bell' on your
VDU and the character is ignored.

To terminate a line, or force a statement to be executed, hit the
RETURN key.

finally only a limited number of characters can be displayed on one
line of a VDU screen, however it is possible that your program could
contain more characters than this. To allow you to edit the line you
will find that the editor shuffles the program accross the screen
when you try and move the cursor beyond the edges of the screen.

You can alter the length of the displayed string with the WINDOW
routine. You should normally set the window to be one less than the
number of characters displayed on a line, this avoids confusion when
the cursor attempts to move off the edge of the screen.

Eg a standard VDU will display 80 characters on a line, in this case
you should s el ect a window of 79 characters by entering:

79 WINDOW <Retur n>

4.2.5 Have a Go

At this stage it may be useful to try typing some text at the
terminal, this should not cause any problems as you are not actually
connected to any real plant!

Try the effect of reducing the window size (you cannot make it
smaller than 6).

Try modifying text on the screen using the TAB, BS and DELETE keys.

If anything goes wrong, hit the ESCAPE key and the terminal should
display:

* free nnn*

4 . 2.6 Summary

Table 4.2.6 describes the single character commands introduced in this
section.

CTRL-P
CTRL-Q
CTRL-X
ESCAPE
BS
TAB
DELETE

Table 4.2.6

Initiate log on sequence (Halt all user programs)
Log-off for Version l
Log-off for Version 2 & 3
Halt background program and print standard message
Back space single line editor
Forward space single line editor
Delete character in single line editor

Single Character Commands

'

' I
.

''1
.,.; ~

• l
, ,_/

" ~
',''

:.•;

. .l
!
)

iA"

• .• !

'' l
I
:!

4.3 Interaction and the Interpreter

One of the major advantages of the FORTH language is that it is both
interactive and interpretive. This makes it easy to learn the
language since you can pick it up in easy stages.

An interpretive language also means that programs can be modified
very easily, simply by editing them. You don't have to worry about
compiling and linking programs as this is done automatically.

A further ad vantage of FORTH with respect to many other interpretive
languages, such as BASIC, is that the interpreter actually compiles
the program as you enter it, and NOT at run time. This means that
programs are very efficient, both in size and speed.

When you enter a program, the text is scanned for syntax errors
(typing mistakes) and valid references (that any programs you call
already exist) . If there are any errors, a message will be printed on
your terminal. A list of the error messages and a more complete
explanation of their meaning is given in ***** · **·

This sec t ion will introduce you to the language by performing some
calculations directly at the VDU. In fact you will be using the FORTH
language as a rather sophisticated calculator.

4.3.l Arithmetic Calculations

Arithmetic is performed in
arithmetic, rather than
arithmetic.

Reverse Polish Notation (RPN) or postfix
the algebraic notation used in written

The rules of RPN are very simple, and will be familiar to those who
have used a Hewlett Packard calculator. The first process is to put
data onto the stack, then when the program reaches an operator (eg
Add) this will modify the data on the stack.

The most commonly used operators for arithmetic are :

+ Add

•
I

Subtract
Multiply
Divide

Consider an example to add the numbers 4 and 5

this would normally be written (4+5)

however in RPN it would be written 4 5 +

Taken step by step the following table shows what the computer would do

: Step No : Operation : Stack position :
2nd Top

:---------:-----------:-------:--------:
1
2
3

4
5
+

4
4
5

9

A more complicated example that requires the use of brackets is the
expression:- 4•(5+6)

This would be written in RPN as:- 4 5 6 + *

The f ollowing table shows what happen s s te p by step

: Step No : Operation : Stack position
3rd 2nd Top

---------:-----------:-------:--------:-------:
1
2
3
4
5

4
5
6
+

*

4
4
5
4

4
5
6

1 1
44

• I

··a·ft·1 .·

~

I
'~

. .

')
I

d

!

j

· ~

l .. ~

·· 1
1
1 . . . i

:J

.J

l
' .J

4.3.2 Try Some Arithmetic

You are now ready to try some examples at the terminal, naturally you
will want to see the results of your calculations, this can be
accomplished by printing the top value on the stack using the . (Dot)
function.

Type the following example at your keyboard:

<Escape>
Free nnn
4 5 + . <Return>
9
Free nnn

Try a few sums of your own and confirm that you are getting the
correct answers.

4.3.3 Summary

Table 4.3 describes the arithmetic functions introduced in this
section.

The notation follows the form described in section 3.4, and the
description column provides a concise explanation of the operation.

Operator Stack notation Description

+ (nl n2 sum) Adds (nl+n2)

(nl n2 diff) Subtracts (nl-n2)

* (nl n2 prod) Multiplies (nl*n2)

I (nl n2 quot) Divides (nl/n2)

Table 4.3 Arithmetic Operators

4.4 Terminal Input Output Operations

This section describes the operators used for pri nting results or
messages on the terminal. These operators would normall y be used
during program de velopment to check re s ults, and moni t or the progress
of a program.

4.4.l Numbers and Print Rou t ines

All data used in programs is stored
point numbers, however in some cases
either Hexadecimal or ASCII formats.

in the same fo r mat as f loat i ng
it is use f ul to present data i n

Data can be entered in the following thre e for ma t s:

a) Standard floating point numbers, eg 56 1000 l.2E-12 -5 . 678 .

b) Hexadec i mal format can be used to represent a 16 bit number. This
number is preceded by the #=chara c ter, eg #=OOlC 1fCDEF .

c) ASCII format can be used to provide a two character number. This
number is preceded by the $ character, eg $AB $XY

Note t hat in TCS Forth Vers i on 1 data can only be presen t ed in
standard decimal format.

Numerical data on the top of the stack can be printed in any of these
three formats.

Operator Description

$

This operator (introduced in section 4.3.2) takes the number
off the top of the stack and prints it on the terminal.

This operator takes the number off the top of the stack and
prints it in Hexadecimal format. The number is preceded by
a :#= for identification purposes .

This operator takes the number off the t op of the stack and
prints it as two ASCII characters. The c haracters are
preceded by a $ for identification purposes.

The examples below show how a sing l e number can be printed in the
differing formats :

<Escape>
Free nnn
16706 . <Return>
16706
Free nnn
16706 -:;:+. <Return>
#.4141
Free nnn
16706 $ <R e t urn>
$AB

*Free nnn•

''.''.'1
....]
-~"·

J

I
I

.. J

•. ,! .
. ']

.·: ··~

i
:..:1

. ---,
·- ;~

j
.. J

.. - ~ -~

i
... .J

j

·'

i

~ - .J

j
. ·. 1

' · .. A

4.4 . 2.Character Output

It may be useful to print messages on the screen wh i lst programming,
or to provide some type of format when printing results. This can be
achieved with the following operators :

Operator Description

II

SPACE

CR

LF

BS

This word defines the start of a print string or message to
be printed on a terminal . The string must be terminated by a
double quote character. Try the example:

." THIS IS A STRING" <Return>
THIS IS A STRING
Free nnn

This word is only available in TCS Forth Version 3 and
cannot be used in "immediate mode". The word defines the
start of a text string which is terminated by another "
character . When the word is e xecuted, it stacks the address
of the string as a floating point number. The printing
words . or $ will now print this number as a text string
rather than as a standard floating point number.

This transmits the standard ASCII space character to the
terminal .

This transmits the standard ASCII carriage return character
to the terminal.

This transmits the standard ASCII line fee d character to the
terminal .

This transmits the standard ASCII backspace character to the
terminal.

NL This forces a new line on a terminal, it is a shorthand
version of entering CR followed by LF.

EMIT In some cases it is us efu l to be
control characters to t he t erminal.
a value in the range O to 127 off
transmit s it to the terminal. Eg to
the t er minal to ring the bell type:

7 EMIT <Retu r n>

able to transmit special
The EMIT operator takes
the top of t he st ac k and

send one charac t er to

If the va lue is i n the range 128 to 255 it is transmi t ted as
3 ASCI I characters:

ESC Cl C2

where ESC is the normal Escape cha ract er (Decimal 27), and
Cl and C2 are the characte rs of low and high signi fi cance in
the Hex adeci mal representation of the number .

Eg 126.10 = 60.16 is emitted as
254.10 = FE.16 is emitted as

ESC 0 8
ESC E F

Try to use a few of these operators and test their effect. You should
now be getting the hang of using the interpreter in what is called
"Immediate Mode". This term means that your operations are executed
immediately, unlike in a program where you define a set of operations
that can be invoked at a later time.

The Immediate mode is a useful facility since it allows you to test
programs at your terminal.

.. {

~
•. • J

4.4.3 Summary

Table 4.4 provides a concise list of the words introduced in this
section.

Operator Stack notation

(nl

(n 1

$ (nl --)

" abed 11
(--)

SPACE

CR

LF

85

NL

EMIT (nl --)

WINO OW (nl

" abed" (-- add)

Description

Print the value nl as a decimal number.

Print the value nl in hexadecimal format .
(Not available in TCS FORTH Version 1)

Print the value nl as 2 ASCII characters.
(Not available in TCS FORTH Version 1)

Prints the string abed on the terminal.
The 11 character terminates the string.

Transmit a space to the terminal.

Transmit a carriage return to the
terminal.

Transmit a line feed to the terminal.

Transmit a backspace to the terminal.

Transmit carriage return and line feed
to the terminal.

Transmit nl as an ASCII character

Set the terminal line length
(see section 4.2.4)

Stacks address of the string abed. The
" character terminates the string.
Not available in TCS Forth version 1
and 2.

Table 4.4 Number Printing and Terminal Control

4.5 Writing a Program

The Forth programming language is unusual with respect to many high
level languages. Its power comes from the ability to build up
powerful programs, whilst allowing a programmer some access to the
primitive functions of the computer when required.

A Forth program comprises a series of "words", these correspond to
the functions or subroutines of other programming languages.

The words are stored in a dictionary. This dictionary already
contains a set of words that are fixed in the instrument. When you
write a word this is added to the end of the dictionary. The order of
the words in the dictionary is defined by the order in which the
words are entered.

There is no difference between using the words already in the
dictionary and the words you add to the dictionary, although for
convenience the words are normally listed separately. The only
restriction is that words can only call words that already exist
below them in the dictionary.

This means that a programmer would define a problem from the top
down, but must write the program from the bottom up. For example the
main program may be intended for boiler supervision - the top level.
This would be broken down into elements such as adjusting setpoints
and checking for safe operating conditions. This process continues
downwards to the basic functions of opening valves or triggering
alarm signals.

The programming phase now starts from the bottom level writing the
basic functions which will be used by other routines. In this way the
low level words can be written and tested before inclusion in the
main program.

. ::3

1
... · .. l

\
)

!
.J

4.5 .1 Creating a Word

A word is created by the user at the terminal. The general format of
a ~1ord is:

Name Program-code

This can be broken down into four parts.

a. The colon character : - This is a special word that defines the
start of a word definition.

b. The Name - This provides a unique identifier for each word in the
dictionary. The name can contain any standard printing ASCII
characters. The compiler checks and stores the first 7 characters
in the name . If a name contains more than 7 characters a check is
made of the length of the string and the values of the first 7
characters.

c. The program code - This part contains the actual program, it
consists of other words from the dictionary or literals (numbers).

d. The semi-colon character This is a special word that
terminates the program. Every colon at the start of a word must be
matched by a semi-colon at the end of the word .

It is useful to see if
entering a program. This
UWORDS. A more complete
this section.

Type the following line:

FWORDS <Return>

any programs exist in the
can be done using the
description of these words

dictionary before
words FWORDS and
is given later in

This should list the names of all the fixed words on your terminal .
You should recognise some of these from earlier sections.

Type the following line:

UWORDS <Re turn>

Thi s should list the names of any words that have . been added to the
user section of the dictionary. If there are no words in the user
dictionary an e rror message is printed.

Before writing any new words for the instrument, check that nobody
else has any programs in the instrument that they want to keep . Then
type the line:

NEW <Re turn >

Thi s will delete all the user words in the RAM area of memor y.

Wri te the following wor d and type
Sinc e you ar e getting th e hang of

<Re turn> when you have finished.
the language , th e <Return> c omma nd

will be left out of the following examples. You can tell when the key
is required because the instrument~ response is underlined.

: TEST 4 5 + • ;

Free nnn

If you make a mistake the instrument will print an error message and
retype the word so that you can modify it. When you are happy type
the <Return> key. Note you do not need to move the cursor to the end
of the line before typing the <Return> key.

If you get lost or confused, don't panic! Type the <Escape> key, and
the instrument should print:

Free nnn

You can then start again.

This word should now be in your user word dictionary, try typing:

Ul.JORDS

*
** USER **
*
TEST
Free nnn

This is the same sum that you tried in section 4.3.2, h~wever this
time it has been written as a program and stored in the dictionary.

To run the word type:

TEST
2.
Free nnn

This time try writing a word to average two numbers on the stack,
this word adds the top two numbers on the stack and then divides by
two to calculate the average. The result is printed with a message.

: AVERAGE + 2 I ." The average is "
Free nnn

Try the example:

4 5 AVERAGE
The average is 4.5
Free nnn

You should now be able to see how you can build up words to do simple
task s that can be i nc luded in other wo r ds .

Try crea ti ng some wor ds of your own, i t i s not dif f icult and wit h a
littl e practic e you s h ould s tart to gain co nf i dence with th e
l angua ge .

,. ~ .. ;;.
.i ..

. .J

•• ;Al

.. ···:·1
i

I ; ..•.)

4.5.2 Editing a Word

The editor within the instruments allows you to e xamine and modi fy
words that you have written.

To examine an existing word type:

: Name <Return>

Where Name represents an existing program. If the program name does
not exist you will get an error message on your terminal. This
facility allows you to correct errors, or modify programs without
having to start from scratch each time .

The editor also allows you
existing words. This is done
terminal, you then modify the
store the new word in your

to create new words that are similar to
by calling up an existing word on the

name of the word and the program, and
dictionary.

4.5.3 Dictionary Management Words

Whilst you are learning how to create words, it may be useful to
consider other words in the fixed dictionary that are used for
modifying the dictionary contents.

Word Description

FWORDS This word lists the names of all the words i n the fixed
dictionary on the terminal.

UWORDS This word lists the names of any words that the user has
added to the dictionary on the terminal.

AWORDS (6356/6366 only) This word lists the names of the application
programs in the fixed dictionary on the terminal.

UL I ST

FORGET

This word provides a complete listing of the program on the
terminal by printing all the words in the user dictiona ry in
the order in which they were entered . The listing is
formatted to give some structure to the program. The listing
can be suspended and restarted by typing a c ha r acter on the
keyboard .

This word deletes the last word entered in the
dictionary . Words may only be deleted on a last in first
basis, to avoid conflicts between word references.

user
out

INSERT This word allows a new word to be inserted within the current
user dictionary. The user would type

NEW

STORE

RECALL

CLEAN

INSERT Name
Free nnn

The new word can now be written and will be placed before the
named word in the dictionary, le it would appear to have been
written before the named word.

This word deletes all the programs stored in the RAM area o f
memory . It is useful when reprogramming an instrument.

The STORE word is used to copy a program from the RAM area to
the EEPROM area. Note that at power up the program in EEPROM
is automatically copied to the RAM area, thus if the RAM area
contains a different edited version it will be overwritten.

The STORE word takes up to 40 seconds to execute. Data is
verified as it is written, and progress is indica t ed by
printing an asterisk every 100 bytes. If the transfer fails
then a printout occurs of the location and both the original
and incorrect data.

Note that when you store a
current window size, user name
EEPROM.

program you also store
and security code in

the
the

The RECALL word is
area to RAM area. Note
power up, and any
ovennitten .

used to copy a program from the EEPROM
that this occurs automatically at
program in the RAM area will be

Note that RECALL will also restore the window size, user name
and securi t y code stored in the EEPROM.

The CLEAN word r estores the EEP ROM memory to t he unprogrammed
state. It operate s in the same way as STORE by writing FF to
to every locat i on in EEPROM .

("''·, ... '· .. · .. ·.' .. ~ .. ""'J

)/
... .J

. ~;

1
.::.:r

····1
., .. ,j

lllill

... . ,

i
-.)

I , : ,

'"l
. , .. , ..

... ·~
, .,

' i
.:.J

• ~. ~' I

j

. . ~

4.5.4 Summary

Table 4.5 describes the words associated with modifications to the
dictionary .

Operator Stack

: Namel (--)

FWOROS

UWORDS

AW OROS

ULIST

FORGET

INSERT Nam el

NEW)

STORE

RECALL

CLEAN)

Description

Create a new program called Name! or list
an existing program called Name!

Terminate a : definition

List the fixed words dictionary.

Lists the user words dict i onary.

(6356/6366 only) List the application words
dictionary.

List the user program.

Delete the last word entered in the user
dictionary.

Insert a new word before the word Name!.

Delete all the programs stored in the RAM.

Copy programs from RAM to EEPROM.

Copy programs from EEPROM to RAM.

Clean the EEPROM memory.

Table 4.5 Dictionary and Word Management

Some examples of other stack manipulation
a full list is given in Table 4. 6 .1.

word Description stack

DROP Discard the top of stack Top->:
item.

DUP Make a copy of the top of Top->:
stack item.

OVER Move a copy of the second Top->:
stack i tern to the top
of the stack.

ROT Rotate the top three Top-> :
stack items .

PICK Replaces the pick argument Top->:
with the required value
from lower on the stack.

ROLL Rotate the required number Top->:
of values on the stack.
Note:
2 ROLL is equivalent to SWAP
3 ROLL is equivalent to ROT

words are given

before Stack

2 Top->:
l

5 Top->:
7

3 Top->:
4
9

6 Top->:
0
8
l

3 Top-> :
4
6
8
0

3 Top->:
4

6
B
0

below,

a ft er

l

5
5
7

4
3
4
9

8
6
0
l

8
4
6
8
0

8
4
6
o

and

·1
.·i :.

"'l
!

· -''

' i
I

... .J

I
.. J

•• .• ·1~
·.;...;,,

. .J

'! . i
;J

·. ·'i

1
I

._J

,. 1

_j

4.6 Stack Manipulations

Previous sections have shown how you can do arithmetic with data on
the stack, however a programmer will often find that data is not in
the correct order on the stack for the required calculation .

Consider writing a word to find the reciprocal of a number on the
stack. The short form description of this word could be :

INVERT (n -- l/n) Replaces n with its reciprocal value.

The required computation would normally be written as:

l n I

but for the general purpose word, how do you get the number l below n
on the stack?

The solution is to use the word SWAP, which SNitches the order of the
top two stack items . The example below shows how the stack is
altered:

SWAP Switch the order of the
top t~o stack values.

Try the example:

l 2 . SPACE .
LJ
Fre e nnn

Now try the example

l 2 SWAP . SPACE .
1 2
Free nnn

Before
Top-> : n2

nl

After
Top->: nl

n2

You should now be able to write the word INVERT, this ~ould be:

: INVERT 1 SWAP I ;

Try it and check that it really works .

4.6.l Local Variables

Note these local variables are not included in TCS Forth Version 3.

Programs requiring access to several arguments or temporary variables
can result in intricate stack manipulations, which can be difficult
to understand and maintain.

This problem can be alleviated by the use of local arguments within
an ARG-RES (arguments-results) structure. A programmer can allocate
up to 8 stack values to be used as arguments within an ARG-RES
structure. At the same time space for 8 results is reserved on top of
the stack. Both the arguments and results can be used as local
variables within the structure. On leaving the ARG-RES structure a
number of results can be left on top of the stack for use by other
parts of the program.

To define an ARG-RES structure, the programmer defines the number of
arguments on the top of the stack with the ARG word, and this
automatically reserves space on the stack for 8 results

Stack before Stack a ft er

This example shows how the Top->-'-: __ .._.;3"--~-'----T~o~p~-......:....>~R..:.e..:.s~8~-~>:
stack is modified with the 5 " 7->-'-:---~
ARG word when three arguments 6 11 6->-'-=-----:.
are required. 8 11 5->..:.=-----=-
The value xxx indicates the xxx " 4->-'-=-----:.
ini ti al limit on the stack. 11 3->..:.=-----=-

" 2- >..:.: ___ .__:.

II 1->-'-=---~
Arg3->: 5

II 2-): 6
" 1->: 8

xxx

To leave an ARG-RES structure the programmer defines the number of
results that are to be left on the stack with the RES word. All other
arguments, results and residual data on the stack are discarded .

This example shows how the
stack is modified with the
RES word when two results
are required.
The value xxx indicates the
initial limit on the stack
when the ARG word was used.

Stack before

Top->: 2
m

Res8->:
II 7->:
II 6->:
" 5->:
" 4->:
t1 3- > :
" 2->: 0

" 1->: 125
Ar g3 - >: 5

" 2- >: 6

" 1->: 8
xx x

Stack a ft er

Top->: 0
125
xxx

··. ~ .. ,
I
·j

.. 1
i __ J

. ·l .,
i

..... ,,.J

'' !
:..J

The words GETARG, GETRES, SETARG and SETRES are used to ac c e s s the
local variables. Simple examples showing how the stack is affected
are given below.

As you try to use these words, you will disc over that the y can on ly
be used within an ARG-RES structure.

ARG-RES structures may be nested, but only the arguments and results
associated with the current definition may be acce s sed .

Word Descrip t ion Stack be fore Stack after

GETARG Copies the data from the Top->: 2 Top- >: 6
required Argument to the 7 7
top of the stack.

Arg2->: 6 Arg2->: 6

xxx xx x

SETARG Move data from the top of Top->: 2 Top-> : 7
stack to the required 4
argument. 7 Arg2->: 4

Arg2->: 6 xxx

xxx

GETRES Copies the data from the Top->: l Top->: 6
required Result to the 7 7
top of the stack.

Resl-> : 6 Resl->: 6

xx x xxx

SE TRES Move data from the top of Top->: 2 Top- >: 7
stack to the required 125
Result. 7 Res2-> : 125

Res2- >: 3 xxx

x xx

4.6 . 2 Summary

Table 4 . 6 . 2 provides a concise list of the stack manipulation words
described in this section.

word Stack notation

DROP (n 1

DUP (nl nl nl)

OVER (nl n2 nl n2 nl)

Description

Discard the top stack item.

Duplicate the top stack item.

Copy the second item and put it on
top of the stack.

ROT (nl n2 n3 n2 n3 nl) Rotate the third item to the top.

SWAP

PICK

ROLL

?DUP

* ARG

* RES

(nl n2 n2 nl)

(np n2 nl p
np .. n2 nl np)

(nl n2 .. nr r

(n
(0

n2 .. nr nl)

n n) or
0)

(Al .. Ann --
Al •• An Rl .. RS)

(Al •• An Rl •. RS m
-- Rl .. Rm)

* GETARG (nl ARGn)

* SETARG (nl n2 --)

* GETRES (nl ARGn)

* SETRES (nl n2 --)

Swap the top two stack items

Replaces the PICK argument p with the
data p elements deep on the stack.
(Not in TCS Forth Version l)

Rotate the top r elements on the ·
stack and discard the ROLL argument.
(Not in TCS Forth Version 1)

Duplicate the top stack item if it is
not zero.
(Not in TCS Forth Versions 1 & 2)

Mark n values on stack as local
arguments and reserve 8 stack
locations for a local results area.

Discard the local arguments and
results, and replace with the
first m results.

Stack the data from local argument nl.

Move data nl to local argument n2 .

Stack the data from local result nl.

Move data nl to local result n2.

* These words are not available in TCS Forth Version 3.

Table 4.6.2 Stack Manipulation Words

·"'':!

.. J

J
J

.J

;

i
j

.•..• J

l
1

... ,,;

-·.-.• .. !

. ' !
'

. 1
: :i

4.7 More Arithmetic and Trigonometric Words

This section describes additional arithmetic and trigonometric words
available in the language. By now you should be familiar with the
notation used to describe a word, and full descriptions are not given
here, however it is worth trying each word out to familiarise
yourself with what is available.

Word

ABS

MAX

MID

MIN

MINUS

SQR

SQRT

INT

E

PI

SIN

cos

ATAN

ATAN2

EXP

LN

Stack notation

(n -- :n:)

(nl n2 n-max)

(nl n2 n3 -- n-mid)

{nl n2 -- n-min)

(n -n)

(n n*n)

(n SQRT(n))

(n n-int)

e)

pi)

(n sin(n))

(n cos(n))

(n atan(n))

Description

Return absolute value .

Return maximum of two numbers.

Return middle of three numbers .
{Not available in Version l)

Return minimum of two numbers .

Negate the top of stack number.

Square the top of stack number.

Square root the top of stack number.

Return integer part of n.

Return e (2.71828) on stack.

Return pi (3.14159) on stack

Return sin(n), n expressed in radians.

Return cos(n), n expressed in radians .

Return atan(n), expressed in radians
and in the range -pi/2 to +pi/2.

(nl n2 -- atan(nl/n2)) Return atan(nl/n2), expressed in
radians and in the range -pi to +pi.

(n exp(n)) Return exp(n) on stack.

(n ln(n)} Return natural log, ln{n) on stack .

Table 4.7 More Arithmetic and Trigonometric Words

4.8 Logical Words

These words allow logical operations or boolean arithmetic to be used
on data on the stack.

Since data is kept in floating point, programmers should consider the
way numbers are treated before the operation.

Numbers are treated slightly differently in Version l, 2 and 3.

TCS Forth Versions l and 2

For all the logical words except NOT the two stack entries are
first rounded to the nearest integer, and limited to 16 bit
integers in the range 0 to 65535 (Hex values 0 to FFFF).
Negative numbers are all treated as O. The boolean operation is
then performed on the two 16 bit words, and the result is
converted to the floating point result.

TCS Forth Version 3

For all the logical words except NOT the two stack entries are
first rounded to the nearest integer. Positive numbers are
limited to 16 bit integers in the range O to 65535. Negative
numbers in the range -65536 to -1 are converted to their 16 bit
2's complement form, and numbers less than -65536 are treated as
o. The boolean operation is then performed on the two 16 bit
words, and the result is converted to the floating point result.

The lists below show how numbers are converted to 16 bit .values for
boolean arithmetic.

Positive numbers Negative numbers
Versions l 2 and 3 Version 3 only

Decimal Hexadecimal Decimal Hexadecimal
number equivalent number equivalent

65535 FFFF -1 FFFF
65534 FFFE -2 FFFE
32769 8001 -32767 8001
32768 8000 -32768 8000
32767 7fFF -32769 7FFF
l 0001 -65535 0001
0 0000 -65536 0000

· .: :···.: .~:· '"~
:;rn:

c"'] ..
·:..:: ..

···1 . ·. 1

·.:-::

.. J

'']
J

.. .J

ff.t·.11
···]

I
.J

· __ j

•' l ··· 1
.· \

... J

:1
i

4.8 .l Examples

These examples show the effect s of the logical or boolean words on
the stack.

Word Description

AND form the logical AND
on the top two stack
values.

DR form the logical DR
on the top two stack
values.

XOR form the logical XOR
on the top two stack
values.

NOT Replaces a 0 on top
the stack with a 1,
otherwise returns a

4.8 . 2 Summar:t

Word Stack notation

AND (nl n2 and)

OR (nl n2 or)

XOR (nl n2 xor)

NOT (n -- f)

Table 4.8 Logical Words

Stack before

Top->: 3
1
5

Top->: 2
l
5

Top->: 5
7
5

of Top->: a
5

a.

Description

Return the logical

Return the logical

Return the logical

Return flag where:
f=true=l if n=O, or

Stack after

Top->: l
5

Top- >~:_.....::;.3 _ _;.
5

Top->..:.:_.....::;.l_.....;,.
5

AND.

OR.

XOR.

f=false=O 1 f ntO

4.9 Comparison Words

The comparison words allow tests on data on the stack. The result is
returned as a flag on the stack where:

Flag = 1 = True
Flag = O = False

Since these words are reasonably simple to understand, you are left
to your own devices to find ways of testing them.

Word Stack notation Description

> (nl n2 -- f) Return true flag if nl is greater
than n2.

< (nl n2 -- f) Return true flag in nl is less
than n2.

= (nl n2 -- f) Return true flag if nl is equal to n2.

O> (n f) Return true flag if n is positive.

O< (n f) Return true flag if n is negative .

0= (n f) Return true flag if n is zero.

Table 4.9 Comparison Words

."'7l
·1 .:.:,

· 1
J

..I
,,.

1
:.!

·~::.:J

')

J

l
.... .J

· 1
I
1

~ J

,J

1
: :1

·····1.
. . . ~

.·.

_J

l
j

.. l

' I
· . .,,'~

4.10 Variable and Timer Words

The TCS Forth provides access to 64 general purpose floating point
variables, and 16 timers.

4.10 . 1 var iables

In normal use, temporary data is stored on the stack, and modified or
discarded after it has been used, however, in some cases intermediate
results may need to be stored for later use elsewhere in a program.
For these aplications the programmer can read or modify 64 floating
point variables. These are referred to as variables l to 64.

In addition to reading or writing to the variables, words are also
provided to integrate or accumulate data i nto a variable, and also to
form the difference between new data and the current data stored in a
variable. Examp les of how these words affect the stack and the
variables are given below:

Word Description

SETVAR Store the second stack
item in the variable
given by the top stack
item .

GETVAR Replace the variable
number with the data
stored in the variable.

SUMVAR Add the second stack
item to the variable
given by the top stack
item, and return the
result on the stack.

DIFVAR store the second stack
item in the variable
given by the top stack
item, and return the
difference on the stack.

Stack before

Top->: 7
124

3

Var 7 = xxx

Top->: 7
3

Var 7 = 124

Top ->: 7
5
3

Var 7 = 124

Top->: 7

136
3

Var 7 = 129

Stack a ft er

To p->_: _ _..;;..3_-.:..

Var 7 = 124

Top- >; 124
3

Var 7 = 124

Top->: 129
3

Var 7 = 129

Top->: 9
3

Var 7 = 136

4.10 . 2 Timers

The timers are generall y used in sequenc ing operations, for e xample a
programmer may want to measure the tim e period between two events,
check that actions are taken within a given time pe riod, or provide a
delay . For these purpose s 16 timers a re provided, referr ed to as
timers 1 t o 16.

The timers are set and read in seconds, however, they are stored as
32 bit registers , where one bit represents approximately 2ms . If you
do the arithmetic you will find that thi s represents plus or min us
4,294 ,967 sec or just over 7 weeks .

The timers count down wa rds , so that if a timer is initialised to 10,
then 10 sec later it will read back as O, and a further 10 sec later
it will read back as -10. Timer values are upd ated continuously when
the i nst rumen t is powered up, this means that when a timer overflows,
below -4 ,294,967 , it will automatically be reset to +4,294,967, and
continue counting down .

Due to the floating point format used within the instru~ent and the
2ms update rate, the timers can be set or read to a resolution which
is the larger of 2ms or l part in 2**24.

Some examples of the effects of the timer words on the stack are
given below:

Word Description

SETTIM Store the second stack
item in the timer
given by the top stack
item.

GETTIM Replace the t im er
number with the current
time in the timer .

+TIM Add the seco nd s tack
item to the timer
given by the top stack
item .

Stack befor e

Top->: 3
100

9

Tim 3 = xxx

Top - >: 3
9

Tim 3 = -15

Top->: 3
100

9

Tim 3 = -22

Stack after

Top->_: __ 9 __

Tim 3 = 100

Top->: -15
9

Tim 3 = - 15

Top->: 9

Tim 3 = 78

.:J

··· 1
:,

, J

""' l

l
.J
· i

.j

l
_.J

~~f.~
'"ft]J3

:~~m
~[~
:;.;;;,1

J
._-.. 4

··· 1
J

. J

;
. . ' ~

4 . 10.3 Summary

Word Stack notation Description

GE TV AR (Vn --
SE TV AR (n Vn

DIFVAR (nl Vn

SUM VAR (nl Vn

GETT IM (Tn --
SETT IM (n Tn

+TIM (n Tn

n)

--)

-- n2)

-- n2)

n)

)

Return value stored in variable Vn.

Store value n in variable Vn .

Return the result n2=nl-value in variable Vn,
and store value nl in variable Vn.

Add nl to the value stored in var i able Vn,
the result is also returned as n2 .

Return current value in timer Tn .

Store time n seconds in timer Tn.

Add n seconds to value in timer Tn.

Table 4.10 Variable and Timer Words

4.11 Terminal Input

This section describes the words that allow a program to receive data
from the programming teminal.

The words are normally used in conjunction with the printing words
described in section 4.4, and are particularly useful when debugging
and testing new words.

The word KEY examines the input buffer to see if any keys have been
pressed, and returns immediately to the program with the result on
the stack.

The word NUMBER suspends the program until a valid number has been
entered at the keyboard.

The effects these words have on the stack is shown below. Naturally
these words would be used in different applications, and examples of
words using KEY and NUMBER are given in sections 4.12 and 4.13.

word Description stack before Stack after

KEY Read any characters from Top->: 5 Top->: 0
the programming terminal. 5

Example where no key was typed

Top->: 5 Top->; 65
65

5

Example where letter A was typed

NUMBER Suspends the program Top->: 5 Top->: 7.1
until a valid number 5
has been entered.

Example where 7.1 was typed

Operator Stack notation Description

KEY

NUMBER

(
(

c c) or
0)

(-- nl)

Return the ASCII value of the next
character from the terminal and a 1 flag,
or a 0 flag if no character available.

Suspend progr am t i ll a valid number is
e nter ed a t the key boa rd.

Tabl e 4. 11 Termi na l Inp ut Word s

.
· .·(· •.. rn.

. _:1l

".··"j •.

j

... -,

l
.,, _ _;

4.12 Conditional Branches

A characteristic of a programming language is the
decisions. This allows you to follow different
program depending on various conditions.

ability to make
routes through a

Two types of conditional branch structures are described here:

4.12.l IF ... ELSE ... ENDIF structures

This structure allows a programmer to select a choice of two routes
through a program .

The IF word tests and discards the number on top of the stack . If the
number is not zero, then the statement follo wi ng the IF is executed.
If the number was zero then the statement after the the next
appropriate ELSE would be executed.

To reduce the chance of programming errors, the TCS Forth Interpreter
checks the program before it is compiled , this means that the words
IF and ENDIF must occur in pairs to mark the start and end of the
branch structure, and only one ELSE should be used between the IF and
ENDIF.

Try the following example on your terminal, by creating the words
GETNUM and Tl, and then execute Tl.

By this stage you should be familiar with the TCS Forth and from now
on examples will show how words would be used in a program, and the
intermediate responses from the instrument will not be give~.

GETNUM · "Enter a number" NUMBER ;

Tl GETNUM NL O< IF . " Negative" ELSE " Positive" ENOIF

The ELSE word is optional within an IF .. ENDIF pair, as shown in the
following example:

GET+NUM " Enter a positive number" NUMBER ;

T2 GET+NUM NL O< IF ." I said a positve number" ENDIF

The IF .. ELSE . . ENOIF structures can be nested, but remember this
will make a program more complicated, and will require careful
testing .

4.12.2 CASE . .. ENDCASE Structures

This structure allows one of several options to be selected depending
on the initial argument on top of the stack, this can provide a very
powerful structure, particularly in sequencing applications.

The following three sets of words are associated with this structure,
and must always occur in pairs to mark the start and end of a section
of program.

CASE ... ENDCASE
OF ... ENOOF
ELSOF . .. ENDOF

CASE ... ENOCASE

The CASE and ENDCASE words mark the bounds of a section of program
where the OF, ELSOF and ENDOF words can be used.

The CASE word leaves the original entry or 'CASE argument' on the
stack unchanged, whilst the ENDCASE word will drop this argument if
it has not been dropped by an OF or ELSOF word within the structure.

OF ENOOF

The OF word examines the two numbers on top of the stack, these would
normally be the original CASE argument and the OF argument (which is
on top of the stack). The OF condition is defined as true when the
CASE argument is less than or equal to the OF argument.

If the OF condition is true then both the CASE and OF arguments are
dropped off the stack , and execution continues from the word
following the OF .

If the OF condition is false then just the OF argument is dropped off
the stack, and execution is transferred to the word following the
appropriate ENDOF.

The ENOOF word marks
transfers execution of
appropriate ENOCASE.

ELSOF .. . ENOOF

the end of an
the program

OF
to the

ENDOF
word

section,
following

and
the

The ELSOF word can be used to trap CASE arguments greater than the
maximum OF argument, and it is assumed that the CASE argument is
still on the stack .

If the ELSOF word is executed then the CASE argument is dropped off
the stack, and execution continues from the word following the ELSOF.

The ENOOF word marks the
transfers execution of the
appr opriate ENDC AS E.

end of an ELSOF ... ENOOF section, and
program t o the word following the

• .. '.'.' .. '.1 .. ~~;]

~ l ..
:.:_

,, 1
. ... ~J

i
'i __ J

·· ·1
I
j

l
1

. l

Note that since the ELSOF word transfers program execution to the
word following the ENOCASE, only one OF ... ENDOF or ELSOF ... ENOOF
segment can be executed each time the CASE structure is executed.

The following example shows how different words can be executed
depending on a number typed at the keyboard. You should be able to
see how these messages could be replaced with particular operations
in a sequencing application.

Ml NL " Number less than or equal to 0 11

M2 NL 11 Number between 0 and l" ;

M3 NL 11 Number greater than l" ;

T3 NUMBER CASE 0 OF Ml ENDOF l OF M2 ENDOF ELSOF M3 ENOOF ENDCASE

4.12.3 Summary

Word Stack notation

IF (f - -

ELSE (--)

END IF (--)

CASE (nl -- nl)

ENDCASE (nl)

OF (nl n2 nl)
(nl n2)

ELSOF (nl --)

ENDOF (--)

or

Description

If f is true (non-zero) execute code
following IF word. Otherwise transfer
execution to the word following the
ELSE (if it exists) or the ENDIF.

Marks the end of a block of conditional
code. Transfer execution to the ENDIF word

Marks the end of an IF structure.

CASE marks the start of the CASE
structure.

Drops the case argument.

If nl <= n2 then drop nl and n2 and
execute following code. Otherwise drop n2
and transfer execution to the first word
after the ENOOF statement.

Drop the case argument nl and execute
following code.

Transfer execution to the First word
after the ENDCASE statement.

Table 4.12 Conditional Branches

4 . 13 LoapuStructµres

The . last section covered 'decision making' by conditionally executing
some parts or a program.

This sect.ion covets Word.s that allow a program to condlfional1y
bra.nch baCI< to an earlier part of the prr)grarn. This typ~ of sti!Utture
is called a foop and allows repetition cif a segment of progr~m. .

Wor~~ are ¢rovided to allow a programmer to execute a section of code.
a number of times, to wait until some event oct~rs or ~imply t6 sit
in a loop indefinately (not as stupid as it sounds).

Loops are usually divided into two types, definite and indefinite
loops. A summary of the words used in th~se stru6ttires together with
their effects un the stack is given at the end of this section,
whilst a descri~tion of how the words work and examples are given
below.

4.13.l Definite Loops

Definite loops have a defined start and end point.

DO ... LOOP structure

The 00 and LOOP words define the start and end points of a loop
structure, and must always be used as a pair.

The word DO
The top number
and the second
values off the

sets up a loop and takes two arguments from the stack.
is the initial index or starting point fo~ the loop,
value is the loop limit. The DO word takes these
stack, and stores them for its own internal use.

The word LOOP increments the current index value, and compares this
to the limit value given to the DO word. If the new index is less
than the limit then the program branches back to the word following
the DO. When the new index is equal to the limit the program
continues with the word following the LOOP .

Since the LOOP word increments the index before comparing it against
the limit, the loop is never e xecuted with the index equal to the
limit, this should become clear in the later examples . The following
code would print the word Hello 10 times on your terminal--try it.

10 0 DO NL " Hello" LOOP

~ i1

':[_11

illlll

The I word

The word l stacks the index for the current DO ... LOOP structure.
This index was mentioned in the previous paragraphs and describes the
current status of the loop.

The following example shows
executed 10 times with an
executed with an index = limit.

10 0 DO I . LOOP

how the index varies, the loop is
index starting from O, but is never

this should print the following on your terminal:

0123456789

DO ... +LOOP structure

The DO and +LOOP words define the start and end points of a loop
structure, however, whilst the LOOP word simply increments the index
the +LOOP allows other increments. The words 00 and +LOOP must always
be used as a pair.

The word +LOOP takes a value off the stack and adds it to the current
index value, the new index is then compared to the limit value given
to the DO word. If the new index has not yet reached the limit then
the program branches back to the word following the DO. When the new
index is equal or passes the limit the program continues with the
word following the +LOOP.

The following example shows how the index can be altered with +LOOP.
Do you understand why the initial index in this example was not· set
to 0 ?

128 l DO I . SPACE I +LOOP

The LEAVE Word

The word LEAVE sets the current index value equal to the final limit.
This causes the program to leave the loop the next time the word LOOP
or +LOOP is encountered.

Note that DO ... LOOP and DO .•. +LOOP structures can be nested,
however, the words I and LEAVE only operate on the current loop
index.

4.13.2 Indefinite Loops

This type of loop can repeat indefinitely, or until some event
occurs.

BEGIN ... REPEAT structure

Normally you will write a
and outputs and take any
program would stop, and
from the keyboard .

series of words that will scan the inputs
appropriate action. At this point the

you would have to execute the words again

The BEGIN ... REPEAT structure allows your words to be included in an
infinite loop, so that your program will run indefinitely, or at
least as long as the instrument is powered up.

The BEGIN word marks the start of an indefinite loop, it also clears
the *HALTED* message or flags that can flash on the front panel of
the instrument.

The REPEAT word marks the end of an indefinite loop, and branches the
program back to the BEGIN word.

Note for instruments with multi-tasking. When the word REPEAT is
encountered in a time scheduled task, the task will be descheduled,
however, the next time the program is scheduled it will recommence at
the BEGIN word.

The following example will print the letter A on your terminal
indefinitely, or until you stop the program with the <Escape> key.

BEGIN 65 EMIT REPEAT

BEGIN UNTIL structure

The BEGIN ... UNTIL structure surrounds a section of program that
runs indefinitely, until a condition is met.

The UNTIL word takes a number off the stack. If th i s number is O the
program branches back to t he BEGIN word, otherwise the program
continues with the word following UNTIL.

Note for instruments with multi-tasking. When the word UNTIL i s
encountered in a time scheduled task and the UNTIL condition is not
satisfied, the task will be descheduled; the next time the program i s
scheduled it will recommence at the BEGIN word. When the UNTIL
condition is s atisfied the program continues with the word following
the UNTIL.

The following example wa its until a key is typed on the termina l :

BEGIN KEY UNTIL ." Tha t was "

'"'i
.... .J

J

''')

_j

'"1
.... ...1

::·a

l
j

. J

I

j
' J

4.13.3 Summary

Word Stack notation

00 (1 imit index - -

LOOP (--)

+LOOP (n --)

I index)

LEAVE)

BEGIN)

REPEAT)

UNTIL (f --)

Table 4.13 Loop Structures

Description

Set up a finite loop, with a start point
for the index and a final limit .

Increment the index, and transfer
execution back to the word f ollowing the
DO while index < limit.

Add n to the index, and transfer execution
back to the word following the DO until
the index reaches or passes the limit.

Return the current loop index value.

Leave the loop at the ne xt LOOP or +LOOP .

Mark the start of indefinite loop.

Transfer execution back to the BEGIN word.

Transfer execut i on back t o the BEGIN word
while the flag is false (0).

4.14 Instrument Specific Words

The TCS Forth provides a common programming style on the programmab l e
instruments, however each instrument is designed for a different
application, and there are some words that are unique to each
instrument. These words cover data base access, display selection and
other special functions.

Full descriptions of these words with application examples are given
in the appropriate technical manuals, however, for completeness , all
the words are also described here.

4.14.l Special 6433 Words

The 6433 Programmable Signal Processor is capable of sophisticated
computation and sequencing functions dependent on the state of the
input and output signals stored in its data base. This section
describes the words used to inspect or modify these values.

Each input or output from the instrument is described by a Board
number (Bn) and a Channel number (Cn). The following four words are
used to access the inputs and outputs .

GE TAN Moves the analogue data from the required board and channel
to the top of the stack. The value is returned in engineering
units with the full resolution available from the a-d
conversion. The following example would print the current
value on analogue board 1 channel 3.

l 3 GETAN

SETAN Moves the data, in engineering units, to the required board
and channel output. The following example would set the
analogue output on board 2 channel 5 to 80 units.

80 2 5 SETAN

GETDIG Moves the digital status from the required board and channel
to the top of the stack. The value returned is either a l or
O depending on the status of the input or output. The
following example would print the current status of digital
board 3 channel 7 .

3 7 GETDIG .

SETDIG Modifies the digital status of the required board and channel
output. The output is set low if the data is zero, otherwise
it is set high. The following example ~ould se t t he digital
output on board 4 channel 2 high.

l 4 2 SETDIG

=. ffiTI• '···. :··· ·· '·· U~il

~ .
.

' j
J

j

_;

.. J

··J. :
.·· ·

A program can also access the complete data base of the instrument,
including status words, ranges and limits. Each parameter in the data
base is described by a Board number (Bn) and a Parameter number (Pn) ,
where the parameter numbers are identical to those used for the
binary protocol. The data is returned to "display" resolution, ie
the same as it would appear on the front of the instrument or on a
hand-held terminal. The following two words are used to access these
parameters.

GETPAR Moves the data from the required board and parameter to the
top of the stack. If board l of your instrument is an
analogue board, the following example would print the current
value of the high range of board l channel 3.

SE TPAR

l 33 GETPAR .

Moves the data to the required
2 of your instrument is an
following example would set
board 2 channel 4 to 95 units.

95 2 44 SETPAR .

board and parameter. If board
analogue output board, the

the output high limit of

In some cases a programmer may want to force the front panel display to
a particular board and channel . This could be useful for alarm
annunciation or operator interaction. The following words allow the
program to monitor or change the front panel display.

GETBCN Returns the board and channel number currently selected on
the front panel display . The following example will print the
current front panel board and channel numbers.

GETBCN SWAP ." You are looking at board " •• " channel "

SETBCN Selects a specific board and channel number for the front
panel display. The following example sets the front panel to
board 1 channel 5.

TAG. II

1 5 SETBCN

This word transfers the following text string, up to 8
characters, to the tag display of the currently selected
front panel board and channel. The following message would
print START UP on the tag display.

TAG." START UP"

4.14.2 Summary of Special 6433 Words

Word Stack notation Description

GE TAN

SET AN

GET DIG

SET DIG

GETPAR

SETPAR

GETBCN

SETBCN

(Bn Cn -- n) Return analogue value from the appropriate
Board and Channel.

(n Bn Cn --) Store analogue value n to the approriate
Board and Channel.

(Bn Cn -- f) Return a flag depending on the digital
status of appropriate Board and Channel.

(f Bn Cn --) Set or clear digital status on appropriate
Board and Channel.

(Bn Pn -- n) Return value from appropriate Board and
Parameter.

(n Bn Pn --) Store value n in appropriate Board and
Parameter.

(-- Sn Cn)

(Bn Cn --)

Return the Board and Channel numbers
currently displayed on the front panel.

Set the front panel display to the
required Block and Channel.

TAG." abctt (--) Transfers the string abc to the current
tag. The " character terminates the string.

Table 4 . 14.2 6433 Data Base Access Words

4.14.3 Special Advanced Controller Words

The Advanced Controllers allow a programmer to set up a special
control strategy within a stand alone instrument. This can simplify
many installations that have previously required considerable
analogue and digital computation units in addition to a controller.

Data in the instrument is referenced by a Block number (Bn) and a
Parameter number (Pn), see Appendix 2.

To simplify access to the data base fixed words are provided to place
the Block and Parameter numbers on the stack. The Block numbers are
given by a 3 character word, the first two characters are the block
mnemonic and the third character is the relative block number. The
following example would print the absolute block number of Setpoint
Block 2.

SP2

The parameter numbers are given by a 2 character word which is
identical to the mnemonic used by the hand-held terminal. The
following example would print the parameter number for PV.

PY .
•

The following words are used to access the Advanced Controller data
base .

GET Moves the analogue data from the required block and parameter
to the top of the stack. The following example would print
the Process variable from Setpoint Block 1.

SPl PV GET •

SET Moves data to the required Block and Parameter. The following
example would set the Local Setpoint in Setpoint Block 2 to
40 units.

%GET

%SET

40 SP2 SL SET

This is similar to GET, however the word returns the data as
a normalised value in the range -100% to +100%. The following
example prints the Process Variable from Setpoint Block l as
a percentage of its range.

SPl PY %GET .

This is similar to SET, however the data on the stack is
percentage of full range. The following
the Local Setpoint in Setpoint Block 2 to

expressed as a
example would set
20% of its range.

20 SP2 SL %SET

GETDIG Mov es the
th e top of

digital sta tu s from th e required digital input to
the stack. Th e va lu e r e turn e d i s e it he r a l o' c

depending on the status of the input or output. The following
example would print the current status of digital in put 3.

011 3 GETDIG

SETOIG Modifies the required digital output. The output is set low
if the data is zero, otherwise it is set high. The following
example would set digital output 4 low.

0 001 4 SETOIG

The Advanced Controllers can run two time scheduled programs in
addition to a background program. The following words are used to
modify and monitor the program repeat times, or to start and stop the
user programs.

GETREP Moves the program repeat time (in seconds) to the top of the
stack. The following example would print the program repeat
time for the first time scheduled program.

1 GETREP

SETREP Sets the program repeat time. The following example would set
the second time scheduled program to run at . 5 second
intervals .

RUN

HALT

. 5 2 SETREP

This forces a dictionary search for the programs defined in
the General Purpose Block parameters Ll, L2 and .BG. If the
programs are found they are then installed and run. (This is
automatically done when the instrument is powered up).

This stops all user programs . Successful attempts to edit
user programs automatically force a HALT.

The · Advanced Controllers use a number of additional words associated
with the special blocks within the data base. These words are briefly
described below.

PIO

PIOX

This word is used to compute a control output from the Process
Variable on the stack. The following example takes an input of
1200 units and stores the value as the Process Variable in
Setpoint Block l. It then calculates an output dependent on the
Setpoint in Setpoint Block 1, the 3-term parameters in PIO
Control Block 1 and the mode in Disp l ay and Control Block l.
The result is then discarded.

1200 3Tl PIO DROP

Normally a control loop is made up of a Setpoint Block, a PIO
Blo ck, a Manual Station Block and a Display and Control Block,
wh ich are automatically linked toget he r. In some c as es on l y one
contro l loop i s required , but wi th t wo sets of 3-te rm
con s t an t s. The P IOX word allows the us er to specify wh ich PI O
block i s used, and whi c h loop it i s l inked to. Th e fol l ow ing

I
,,.J

. . .. ,.
l

~·J

I

..J
I

I
.. . f

~ .. : 4'

! ·:,I
.. J

··1
cc !

: '<'t
~,J

:;:·7

. ..J

. 1

... 'I

.J

example takes an input of 1500 units and stores the value as
the Process variable in Setpoint Block 1 . It then calculates an
output dependent on the Set point in Setpoint Block 1, the
3-term parameters in PIO control Block 2 and the mode in
Di s play and Control Block 1. The result is then discarded.

1500 1 3T2 PIDX DROP

MSCONT Moves data from the stack to the output regi s ter of the
appropriate Manual Station Block only when the loop is in an
AUTO mode. The following example sets the output of Manual
Station l to 50% when loop 1 is in AUTO.

50 MSl MSCONT

REMOTE Moves data from the stack to the Remote Setpoint of the
required Setpoint Block . This al s o configure s the loop as a
remote setpoint controller. The following example sets the
Remote Setpoint register of Setpoint Block 2 to 65 units.

65 SP2 REMOTE

%REMOTE This word is similar to REMOTE, however the setpoint is
expressed as a percentage of the setpoint range. The following
example would set the Remote Setpoint of Setpoint Block 1 to
25%.

RATIO

ALARM

25 SPl %REMOTE

Uses data on the stack as the ratio process variable and moves
the result to the Remote Setpoint of the appropriate Setpoint
Block . This also configures the loop as a ratio controller . The
following example takes a ratio process variable of 800, and
calculates the Remote Setpoint for Setpoint Block 1, using the
values in Ratio Block 1.

800 SPl RATIO

Moves the data on the stack to the appropriate Alarm Block and
updates the alarm block status bits. The following example
would set Alarm Block 2 Process Variable to 400, check this
value against the alarm limits, and update the alarm status
bits.

400 AB2 ALARM

FILTER Uses the data on the stack as the input to the appropriate
Filter Block, and returns the resultant output on the stack.
The following example prints the result of applying an input of
30% to Filter Block 1 .

30 FBl FILTER

SE TD EL Moves data from the s ta ck into the bu ffer of t he approp ria te
Oe l a y Blo ck. Th e follow ing examp l e mov es t he valu e 18 i nto
De l a y Bl oc k l.

18 081 SETDEL

GETOEL Moves data from the approriate delay line to the stack . If the
following example is included in a program it will use Delay
Block l to retransmit an analogue input delayed by 20 seconds.

All AV GET 081 SETDEL 20 081 GETOEL AOl AO SET

TOTAL Takes data from the stack as the input to the appropriate
Totalisation Block. The word returns a flag which is 0 if the
Flow Total is unchanged, or l if the Flow Total has been
incremented . The following example uses the value 10 as the
current input to Totalisa ti on Block 1 ' and prints the flag on
the terminal.

10 TBl TOT AL .

The following word allows a user program to change or lock the front
panel display to a particular loop.

SETLN Takes the front panel loop number from the stack. If the loop
number is negative this locks the front panel to the selected
loop, and means the user cannot change the displayed loop
from the front panel. The following example would set the
front panel to display loop 2.

2 SETLN

;': ;;

·.t

l
_J

.. .

..1

4.14.4 Summary of Advanced Controll e r Special Word s

This section describes the data base access routines and spec i al
function words associated with the Advanced Controller.

word

GET

SET

%GET

%SET

Stack notation Description

(Bn Pn -- n) Return data n from the Block and Parameter.

(n Bn Pn --)

(Bn Pn -- n)

Move data n to the Bloc k and Pa r ameter.

Return data n from the Bloc k and Parameter.
The data is returned a s a pe rcentage of r ange

(n Bn Pn -- n) Store the value n expressed as a percentage
in the Block and Parameter .

GETDIG (Bn On -- f) Return a flag depending on the status of the
Block and Digital channel .

SETDIG (f Bn On --

GETREP (nl n2)

SET REP (nl n2 --)

RUN (-- }

HALT (--)

PIO (PV Bn -- OP)

Modify status on Block and Digital channel.

Return program nl repeat time i n seconds.

Sets program n2 to run every nl seconds.

Search install and run the programs defined
in parameters Ll, l2 and BG.

Stop all user programs.

Compute the control output from the Process
Variable using parameters in PIO block Bn.

PIOX (PV n Bn -- OP) Compute the control output f rom the Proce s s
Variable us in g para met er s in PI O block Bn.
Li nk PIO con s t ants to loop n

MS CONT (OP Bn --)

REMOTE (SP Bn --)

%REMOTE (%SP Bn --)

RATIO (RPV Bn --)

AL ARM (P V Bn

FILTER l PV Bn OP)

Update t he OP r egiste r of t he Manua l Station
Block Bn wh e n the loo p is in an AUTO mode.

Update the Remote Setpoint of Setpoint Block
Bn .

Update t he Rem ote Setpo int of Setpoint Block
Bn . Set point expres sed in pe rcentage.

Use s Ra tio Pr oc e ss Variabl e t o update the
Remot e Se tpo i nt o f Se tpoint Blo ck Bn .

Updat e the Alarm Block PV and ST reg i sters.

Update the Filter Bl ock F I and OP r egis ter s.

SETDEL {nl Sn --)

GETDEL (nl Sn -- n2)

TOTAL (nl Bn -- f)

SETLN (n --)

Push data nl into the buffer of the Delay
Block.

Return data delayed by nl seconds from Delay
Block Bn.

Totalise data nl in Totalisation Block Bn.
The flag is set if the Flow Total has
increased.

Set front panel display to loop n. If n is
negative, disable front panel loop changes.

Table 4.14.4 Advanced Controller Special Function words

J

... ~

.. . ~

. · ~ ,
'n J

r
.,.I

-·· !
}
I

... .1

4.14 . 5 Special Microsupervisor Words

The Microsupervisor provides the computation and sequencing
facilities associated with the TCS range of programmable instruments.

In addition to the normal serial link to a computer supervisory
system, the instrument has a serial line that allows the supervision
and interaction of a group of instruments . Further serial lines are
provided that can be connected to a printer or terminal to allow
logging and some operator interactions.

Data from individual in s truments connected to the serial bus is
accessed by an Instrument number (In) and the binary protocol
Parameter number (Pn) . The following words are used to access the
instrument data.

GE TEXT

SE TEXT

and data from the This word returns an error flag
specified point. If there is
stored on the stack and the error
an error occurs, only a non zero

no error, the data is
flag is set to o. When
error flag is returned
example would fetch the
3 and print it on a

on the stack. The following
instrument identity of instrument
terminal .

3 18 GETEXT IF ."ERROR" ELSE " II="#" ENDIF" ;

The error numbers associated with GETEXT are listed in
section 4.14.6.

This word moves data to the required instrument and
parameter and returns a flag on the stack. The flag is O
if there is no error. The following example shows how
the proportional band of a controller with instrument
number 8 could be set to 25%.

25 8 20 SETEXT IF " ERROR" ENDIF

The Micros upervisor has 8 digital inputs, B digital
word s are used to modify or

output s
monitor

and 6
these pushbuttons. The following

signals.

GE TOI

SE TD O

Moves the digital status of the required input to the top
of the stack . The value returned is either a 1 or o,
depending on the status of th e input. The following
e xa mple would print the status of digital input 2.

2 GETDI •

Modifies the dig it al s t a tus o f t he r equ i re d outp ut . The
outpu t is s e t l ow i f th e data is zero , othe rwi s e it is

GETOS

SETOS

'?F

set high. The following e xample will set digital output
5 low.

0 5 SETOO

Returns the status of all 8 digital inputs as a number on .
top of the stack. The following example would print the
digital input sta t us on the terminal .

GETDS #-

Modifies all digital outputs with the data on top of the
stack. The following example will set digital outputs 1,2,3
and 4, and reset digital outputs 5,6 and 7 . Digital output 8
will be reset if it is not allocated to a changeover relay .

-::j:\:f"ooo SETOS

Returns the
pushbutton.
depending on
example would
terminal.

5 ?F •

status of the required front panel
The value returned is either a 1 or O

the status of the button . The following
print the status of pushbutton 5 on the

To allow data and messages to be logged to a printer, or operator
interaction at a terminal , the program can select which serial line i s
used for terminal input and output.

LINE Selects a serial line or display for input and output. The
following line number options are available :

3
4

5
6

Alternate programming terminal serial line.
Printer serial line .
Front panel serial line .
Front panel tag display .

The following example would send a message to the printer
and then switch input and output back to the front panel
l i ne.

4 LINE " PRINTER TEST" 5 LINE

The following words allow a program to present mes s ages or data on the
front panel tag display.

TAG . " This wo r d t r a ns f er s the fo ll owing tex t stri ng , u p t o 8

··•· .. · .. ·.1 .. ··:~
j~

···.··.··1
. .. .
'! I '

.J

.!
.,.,.'}

..,
·I
!
I

:: .• -:I

.'.:}
·. t
·!
·j

.:.. .. ~:;

i . ___ j

characters, to the tag display. This example would show WAIT
KEY on the tag display.

TAG." WAIT KEY"

TAG. Prints the number on top of the stack on the tag display.
This example prints a number on the tag display .

12. 34 TAG.

When using the Microsupervisor in data logging applications, the standard
print routines do not provide a tidy way of displaying numbers . The
following words are used to format numbers in the same as they would
appear on the front panel of a standard TCS instrument.

LFMT .

RF"MT.

Prints a number as 8 characters left justified, with a defined
number of characters after the decimal point. This example
prints a number with two characters after the decimal point.

12.5 2 LF"MT •

Prints a number as a characters right justified, with a
defined number of characters after the decimal point. This
example prints a number with three characters a ft er the
decimal point .

1.234 3 RF"MT.

To enable data logging applications, a time of day clock and a calendar
are included in the instrument. The words used to access these features
are described below.

GETCLK

SETCLK

ADJCLK

Returns the time as three values on the stack. The following
example would print the time in the order - hours, minutes and
seconds.

GET CLK . SPACE . SPACE .

Uses three values on the stack to initialise the clock. The
following example sets the clock to 10:30:00: (half past ten).

10 30 0 SETCLK

Due to variations in components during manufacturing of the
instruments, the clock may gain or lose time . A compensation
value is stored i n EEROM and this word allows a user to adjust
the value. For example, if the clock were gaining 5 seconds a
day, the user would enter:

-5 ADJCLK

CLK. Prints the current time as an eight character string on the
terminal.

KEYCLK

GETOATE

Waits For the user to enter the current time on a terminal and
echoes the values entered. The following example prints a
prompt and waits for a user reply.

NL ." --:--:--" CR KEYCLK

Returns the date as three values on the stack.
example would print the date in the order
year.

GETDATE . SPACE . SPACE .

The following
day, month and

SETDATE Uses three values on the stack to initialise the date. The
following example sets the date to 25th December 1986. The
date algorithm ignores the century value if it is entered.

25 12 1986 SETDATE
or 25 12 86 SETDATE

DATE. Prints the current date as an eight character string in the
order: day, month and year.

KEYDATE Waits for the user to enter the current date on a terminal and
echoes the values entered. The following example prints a
prompt and waits for a user reply.

NL ·" dd-mm-yy" CR KEYDATE

· ··~!

J

_]

' 1
I __ f

.. .,,
:1

' ~
.: •. I

4.14.6 Summary of Special Microsupervisor Words

Word

GE TEXT

SETEXT

GET DI

SE TOO

GETDS

SETDS

'? F

LINE

LFMT.

RFMT.

Stack notation

(In Pn n 0)

or (In Pn -- f)

(n In Pn -- f)

(Cn -- f)

(f Cn --

(-- n)

(n

(n f)

(n

(nl n2 --

(nl n2 --)

Description

Return data n from instrument and parameter .
The flag describes any error conditions.

Store value n to instrument and parameter.
The flag describes any error conditions.

Return flag describing the digital input status .

Set or clear digital output Channel.

Return the status of the 8 digital inputs.

Modify the status of the 8 digital outputs.

Return the status of front panel switch n.

Select serial line n for input and output.

Print nl as a left justified number with n2
digits after the decimal point. (0 <= n2 <= 4.)

Print nl as a right justified number with n2
digits after the decimal point. (0 <= ·n2 <= 4 .)

TAG . " ab" (--) Prints the string ab on the tag display.
The " character terminates the string.

TAG.

GETCLK

SETCLK

ADJCLK

CLK .

KEYCLK

GE TOA TE

SE TOA TE

DATE.

KEYDATE

(nl --) Print the value nl on the tag display .

(-- sec min hr) Return the time as three values on the stack.

(hr min sec --) Set the time from the three valu~s on the stack.

(nl

(

Compensate for clock gains of nl seconds per day

Prints the time as hh:mm:ss

Waits for the user to enter the time, and
echoes the characters entered.

(-- yr mon day) Return the date as three values on the stack.

(day mon yr --) Set the date from the three values on stack.

Prints the date as dd-mm-yy

Waits for the user to enter the date, and
echoes t he characters entered.

Table 4.14.6 Special Microsuperv isor Words

Error condition flags from GETE XT.

Code
-1

0
l
2
3

Meaning
Communications time out.
Good data.
Instrument number not configured in data base .
Pseudo instrument paramet e r number error.
Pseudo instrument bad data base error.

Error condition flags from SETEXT.

Code
-1

0
l
2
3

Meaning
Communications time out.
Good data.
Instrument number not configured in data base.
Pseudo instrument parameter number error.
Real instrument invalid reply (eg NAK}.

j
~j

4.15 Debugging Facilities

To assist in program debugging, a trace feature can be enabled either
in immediate mode, or from within a program.

When the trace is enabled, each time a user word is completed the
word name is printed on the terminal, with a list of all the data on
the stack.

The stack items are printed (non destructively) with the top of stack
item printed first, at the left of the display.

Operator Stack notation Description

TRA-ON Turn trace option on.

TRA-OFF (Turn trace option off.

Table 4.15 Debug Words

4.16 Reserved Words

Apart from the words in the fixed dictionary, there are some words
reserved that define the program installed and executed at power up.

4.16.l The 6433 MAIN Program

When a 6433 is powered up, the program stored in the EEROM is loaded
into RAM. The software in the instrument will then search the user
dictionary for a word called MAIN. If this word exists, the program
will be executed automatically.

The same effect can be obtained by executing the words RECALL and
MAIN at the terminal during a programming session .

4.16.2 Advanced Controller Programs

When an Advanced Controller is powered up, the program stored in the
EEROM is loaded into RAM. The Advanced Controller can then load up to
three programs. The names of these programs are selected in
parameters Ll, L2 and BG in the General Purpose Block.

The same effect can be obtained by executing the words RECALL and RUN
at the terminal during a programming session.

4.16.3 6445 Microsupervisor BGRND Program

The Microsupervisor is the same as the 6433 but the stored program is
executed when the word called BGRND is found in the user dictionary.

4.16.4 The ERROR Program

If a run time error occurs in the back~round program, the software in
the instrument will stop the current background program, and search
the user dictionary for a word called ERROR. If this word exists the
program will be run automatically.

The programs are considered to be "running" when the background
program enters a BEGIN ... REPEAT or BEGIN ... UNTIL structure.

J

'"J

. ··.1

.J

.. , \
i

··· ·<!;
J

j
_J

.. l

~ . ~~
. I

l
I

1.-... l

4.17 Error Messages

This section lists the error messages that could occur during a
programming session and gives more details about the causes.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11 .

12.

13.

14.

15.

16.

Matching pairs
DO ... LOOP, IF

Some words must be used in pairs, e.g.
ENDIF, : This indicates one

half of the pair is missing.

Compiler output buffer overflow This indica t es there is
not enough memory to compile a word.
To overcome this, split the word into smaller mod u les.

Terminal input buffer overflow Indicates t here are too
many characters in a word.
To overcome this, split the word into smaller modules.

Data stack overflow
on the stack.

Attempting to put too much data

Data stack underflow
an empty stack.

Attempting to remove data from

Attempting to edit a rlXEO word
modify a word fixed in PROM.

User tried to

1/0 board type Incorrect data base access routine
used for an input/output board.

LOCAL VARIABLE argument out of range Incorrect
argument used for GETARG, SETARG, GETRES, SETRES.

TIMER argument out of range
existing timer .

ARG/RES argument out of range
the ARG or RES words .

Attempt to access a non-

Incorrect argument for

I/0 Bn out of range
used.

Illegal block or board number

l/O Cn out of range Illegal channel number used.

Undefined or forward referenced word Attempt to
reference a non-existent word, or a word that is not
deeper in the dictionary.

I/O Pn argument out of range
number used .

Illegal parameter

User dictionary empty No words in the user dictionary.

Memor y corruption The user program memory is corrupted,
the program may have to be r e- e nt ered , o r there i s a memory
fa ult.

17.

18.

19.

20 .

21.

22.

23.

VARIABLE argument out of range
non-existent variable.

Attempt to access a

1/0 Write protected Attempting to write to protected
parametei in the data base.

110 Board hardware Attempt to access a faulty board .

User memory not available Insufficient space in the
dictionary for the current word .

Missing ARG statement No ARG used in the current word.

Illegal word use The word is used incorrectly.

Task argument out of range
scheduled program.

Incorrect argument for time

'".' •. '.!. 'I
;.~J

)
jJ

1
.t

-- j

Section 5

Programming Terminal Utilities

This section provides technical details of the serial interface from
the front panel of the instrument. It is intended for people who want
to produce a programming terminal using their own personal comput~r.

If you are using a computer with a TCS application VDU program, the~

the procedure for saving and loading a program is explained in the
appropriate manual .

5.1 Front Panel Electrical Specification

The port on the front panel provides a standard serial link:

Transmission standard RS232/V24 (~12 Volts)

Character length l start, 7 data, l parity (even) + 1 stop bit
(2 stop bits at 110 baud)

5.2 Normal Operating Mode

A VDU can be used in place of the normal hand-held terminal to
inspect and modify the parameters in the data base. When using a VDU
in this mode the following keys are used to move the cursor or load
the data:

L
M

Q
w
z

Enter a positive or hexadecimal number
Enter a negative number
Backspace the cursor
Scroll to the next parameter
Reset display to the ?? CMD prompt

The instrument transmits standard ASCII printing and control
characters to the VDU. In addition the following control characters
have a special function:

TAB This character is used to move the cursor f or ward 1 position .

US LF These two characters are used to reset the display.

When a
echoing
screen.

user
and

logs on, the instrument beh aves in the normal way,
transmitting characters to update the displa y on the

5.3 Sa vi ng a User Program

This mode allows a use r to save a program from .an instrumen t as a
text file . This text can be archived and loaded into the computer at
a later date.

The program is tran smitted one word at a time , and the te xt
tran smi tted contain s additional space, carriage return and line fe ed
characters to prov i de s ome structure to the program.

In the save mode the instruments support the XON-XOFF protocol.

To save a program, the user must be logged on to the i ns t rument.

The save is initiated by sending an ENQ character to the instrument.

The instrument will then send one word, preceded b y an STX character
and terminated by an ETB character .

The instrument will then wait for another ENQ character before
sending the next word. If the instrument receives a character other
than ENQ then it automatically exits the save mode.

To indicate when the complete program has been sent, the final word
transmitted from the instrument is terminated by an ETX character
(not an ETB}.

]~
~

~.'.'ITT!·"· '. ' l!~

'"'j ·. ·.·

.... :

... ", ~

•.' •·1

l
. ,,;,)

5.4 Loading a User Program

This facility allows a very flexible format for the text files
containing the program.

When the file is loaded, control characters such as carriage return,
tab and line feed are treated as spaces; this means that the text
file can be structured to make a program more comprehensible.
Comments can also be included in a file provided they are enclosed in
ordinary brackets. As the instrument receives the file, it discards
redundant characters and comments so that they do not waste space in
memory.

To load a program, the user must have
and deleted unwanted words. Programs
words in the user dictionary.

logged on to the instrument,
can be appended to existing

The computer transmitting the program must support the XON-XOFF
protocol.

The load is initiated when the instrument receives a STX character.
This switches the instrument to load mode so that characters received
are not echoed back to the computer.

The text file of the program can then be transmitted.

The text should be followed by the ETX character to switch the
instrument out of load mode.

As the program is loaded, it is checked for errors, and compiled into
the user dictionary. If any errors are found, the instrument exits
the load mode, and transmits an error message.

IND EX OF ~/OROS

Word

"
*
$
%GET
%SET
%REMOTE

*
+
+LOOP
+TIM

"
I
O<
0=
O>

<

=
>
'?OUP
?F
ABS
AOJCLK
ALARM
ANO
ARG
ATAN
ATAN2
AW OROS
BEGIN
BS
CASE
CLEAN
CLK.
cos
CR
DATE
DIFVAR
DO
DROP
OUP
E
ELSE
ELS OF
EMIT
ENO CASE
ENO IF
ENO OF
EXP

DE SCRIBED IN THE

Section

4 . 4.3
4. 4.3
4 . 4.3
4.14 . 4
4 . 14.4
4.14.4
4. 3.3
4. 3.3
4 .13. 3
4 . 10.3
4. 4.3
4. 4.3
4. 4.3
4. 3 . 3
4. 9
4. 9
4. 9
4. 5.4
4. 5. 4
4 . 9
4. 9
4. 9
4. 6.2
4.14.6
4. 7
4.14.6
4.14.4
4. 8.2
4. 6.2
4. 7
4. 7
4. 5 .4
4 . 13.3
4 . 4 . 3
4.12.3
4. 5 .4
4.14 .6
4. 7
4 . 4.3
4.14.6
4.10.3
4 .13. 3
4. 6.2
4. 6.2
4. 7

4.12.3
4.12.3
4. 4.3
4.12.3
4. 12. 3
4.12.3
4. 7

MANUAL

'''.\

·<' ~
:~.:sl

'"'.'·']··
.: 1•

'.'\

"'\.';

·:1
,J

· ~
.. J

'""j :.,, .:.

'l
...i

l
1

. ..J

.~i~l
gga
<~f
:;;:;.
'i'iill FILTER 4. 14 . 4

FORGET 4 5.4

~~~:.~ FWOROS 4. 5.4 
: ; ~ ·> il 
;:;;:J GET 4.14.4 
:J:.J GET AN 4. 14 . 2 

GETARG 4. 6 .2 

·~~ GET BCN 4. 14 .2 
GETCLK 4 . 14.6 
GETDATE 4. 14.6 

I GE TD EL 4. 14.4 
.h!i! 
~~1~ GET DI 4 . 14 . 6 
m¥J 

GETDIG 4 . 14 . 2 4 . 14.4 

~~fui 
GETDS 4 .14.6 

.=;:r. GET EXT 4.14 . 6 
:.\. 

GET PAR 4.14.2 ·~~ 

GETREP 4 . 14. 4 
;<n 

GET RES 4. 6 . 2 
·~ .. .': GETT IM 4 .10. 3 

GET VAR 4 . 10. 3 

~;.·1 HALT 4.14.4 
I 4.1}. 3 

·.::;t4 
IF 4 . 12 . 3 
INSERT 4. 5.4 

.. J INT 4. 7 
::-~ KEY 4.11 '1"1 

KEYCLK 4.14 . 6 

''.l KEYDATE 4.14.6 
LEAVE 4.13.3 

.... .. l 
LF 4. 4.3 

.I LFMT . 4.14.6 
•J LINE 4.14 . 6 
.. 

"· ;. ~ LN 4. 7 

LOOP 4.13.3 
. ~:1 MAX 4. 7 

. ~.; MID 4 . 7 
MIN 4 . 7 

'' ! MINUS 4. 7 

"-~ MSC ONT 4.14.4 
.. .,,1 

NEW 4. 5.4 

, .· ·~s NL 4. 4.3 

j NOT 4. 8.2 
NUMBER 4 .11 

Of 4. 12.3 
'I 

OR 4. 8 . 2 >-! 
~~i~ OVER 4. 6.2 

PI 4. 7 

[@~ 
PICK 4 . 6.2 
PIO 4 . 14.4 

... ~~ 
PIDX 4. 14.4 
RATIO 4. 14 . 4 

'<·! RECALL 4 . 5.4 i 
,,) REMOTE 4.14.4 

REPEAT 4 .13. 3 
.. :~ RES 4 . 6.2 

.. J RFMT . 4 . 14.6 
ROLL 4 . 6.2 

!".~~-

i 

' • ..• 

~ .. , 
i .. l 



ROT 4. 6.2 tmj 
RUN 4 . 14. 4 
SET 4. 14 .4 
SET AN 4.14.2 ~ 

SET ARG 4. 6.2 ·ir~i 
SETBCN 4 . 14.2 ·.rrJ 

SET CL K 4.14.6 
SET DATE 4.14.6 
SETDEL 4.14.4 
SETDIG 4.14.2 4.14.4 
SE TOO 4.14.6 "'~ 
SETDS 4.14.6 i:~::: 

~iii:. 

SE TE XT 4.14.6 
~~· 

SETLN 4. 14. 4 
~J'~ SET PAR 4.14 . 2 ,, 

SETREP 4.14.4 ~~ 

SETRES 4. 6 . 2 
SETT IM 4 . 10.3 ·:'.gjj 
SET VAR 4. 10.3 <;~ 

;.wi 
SIN 4. 7 
SPACE 4. 4.3 ~'":1 

SQR 4. 7 ] 
SQRT 4. 7 /l 

STORE 4. 5.4 
SUM VAR 4.10.3 "'''} 

SWAP 4. 6.2 .J 
TAG. 4. 14.6 
TAG. " 4.14.2 4 . 14.6 •:: 1~,, 

:: ~ 

TOTAL 4.14.4 d .. ~ : . ~ 

TR A-OF 4 .15 
TRA-ON 4.15 

::d ULIST 4. 5.4 
UNTIL 4 . 13.3 
UWORDS 4 . 5. 4 
WINDOW 4. 4.3 '"'.'i 

XOR 4. 8 .2 :J 

.~J 



...... ~ 

I 
·.·.J 

·~ , :':'' ... . l 

i 
... J 

i ... 

( l ., 
··j 

,,J 

APPENDIX l 

8261 Data Base Configurator 

Interconnection Cables 





" '..! 

>i 
:1 ·• 

""'1 

.J 

·i:.;.~ 

I 
SS . DATE 

I I 
GENERAL DRAWING PRACTICE TO BS 308/0S 3939 

DO NOT SCALE THIRD ANGLE 
·-P-R_~_E_C_T_I ~·~----ri r-J. '5_:/;_o_/ S-5 

i--.--------·L~---------
1 r- ·-, 

RCV {::) ~ - --- ;,-G~A: ~ROU-;;-0 ~YELLOW~,-:::-: 
RC y (·v e) ~S 232 TRANSMITTED DATA (RED) . I • 

XMT(•Vt.')~232 RECEIVED DATA (BLUE) fRrsl t. 

I NC GREEN fer~: 5 
---------------1 5 

I 

(YELLOW) 

NC (GREEN) 

(RED) 

CBLUE) 

-REAR VIEW-

I 7 I 
1-I 
I 8 I 
'-- _:J 

PL 2 
(TO EPSON P *"8) 

7500 BIN TERMI MAL CONNECTIONS 

43 

45 

30 

M IN LENGTH 2 Sm m 
LENGTH 25mm 

- FRONT VIEW -
SO mm 

LENGTH 25mm 
* NOTCH 

NOTE : DIMENSION '(DENOTED BY SUFFIX NUMBER WHICH IS 

INCRE~EN TED SY 001 FOR EACH METRE LENGTH. 

DEFAULT LENGTH IS 3METRES. 

* 'ARROW. ON OUTER PLASTIC SHROUD MU ST SE IN Ll~..E WITH NOTCH· 

DRAWN j FI JM MATERIAL SCALE DIMS. IN M.M.AFPL Y OVER FINISH 
{EXCEPT FOR PAINT ANO LACQUER I 

cHE~Krn as N r s x _ • t- o· ~ 
i----------------------~GENERAl X.X ~ ! O· HOLES < JJ 7m~ 

OES•GN • ' FINISH ASSEMBLED TOLERANCE X .X x - ! 0 ·1 -002. 001 
APPROVAL~ ON 

~IANf. l /YYi.... 
APPROVAL I" rt...J 

TU~NBULL -r ~-=1 CONT~OL 
;_,_) SYSTEMS . LTD 

8 2 71 

El 

TITLE 

INTERFACE CABLE, EPSON PX-8 

TO 11.S TR U1"1E NT RSO 2 PORT 

L A 076706 



GENERAL DRAWING PRACTICE TO BS 308 / BS 3939 

DO NOT SCALE THIRD ANGLE PROJECTION 

DRAWN 

---------T---------<~ 
r--1 

- - ----------~.I I 
SIGNAL GROUND (YELLOW J j 2 I 

8 • 1. 

I • I 
RS232 TRANSMITTED DATA (RED) f 1 3: 

Rs2n RECJEVED DATA <BLUE> I RTS 1 4 I F I 
I • 
I A I ,__.1 N.C. GREEN~TS : : 5 l 

-- - ---------- ----1 GI D ·I 
1-..1 
I C 1 ,-.. 
- - _I 

PL\ 
!TO TERMINAL) 

?LI 

H E c 

() 0 

0 ' F D 

A 

0 , ... 
l._J 

8 

~A 0 CO EO HO{) 
8 ODO Fo 

NOTE : 

(YELLOW) 

N.C. (GREEN) 

(RED) 

(BLUE> 

- REAR V!EW-

- FRONT VIEW -

-1 7 . 
·- ' I 8 I - , L __ ...J 

PL2 
(TO EPSON P X-S) 

*NOTCH 

0 IMENSION ' L' DENOTED BY SUFFIX NUMBER WH ICH IS 

INCREMENTED BY 001 FOR EACH METRE LENGTH • 

• 'ARnow' ON OUTER PLASTIC SHROUD MUST BE IN LI NE WITH NOTCH. 
DEFAULT LENGTH IS 3 METRES. 

J F I JM MATERIAL SCALE 

N.T. S. 

TITLE 

; ~ DATE s 
1 25· 9 85 

INTERFACE CABLE ,EPSON 
P X-8 TO H.H.T. INPUT SOCXET 

TU~NBULL 
- r.& ~ ..=-4 CONT~O L 

_J --' :::J SYSTEMS LTD El DRAWIN G NlJM 8 fA I St< T 1 

LA 0766 44 c / ~~*:~ : OFISt1TS 

071 
A 

::.fal 

·'] 
. . ;~ 

1 

I 

~1 
.! 
j 

I ·) 

I 

I 

,,J 



).! 
~J 

: ., 
... ,1 

APPENDIX 2 

6433 Instrument Parameters 

II, SW, MD and those instrument parameters relating to the Input/Output 
Blocks can be accessed from each of the board types. 

For real blocks l to 4 parameter numbers 1 to 8 refer to Sl to A4 
inclusive. 

For pseudo blocks 5 to 8 parameter numbers 1 to 8 refer to SS to AB 
inclusive. 

The following Tables list the parameter types and numbers. 



.J 



0 l 2 3 4 5 6 7 

Sl Al 52 A2 53 A3 54 

;;,q 
}],@ 

0 II SS AS 56 AG 57 A7 sa ( 4} 

A4 
8 AS SW MD ( 4 ) 

!im'~ 
"J;:;;11 
~: .. ;:1 
·.::::\ 

:;~~~~ 

CHAN l 16 ST* HR* LR* HA* LA* PV* AR* 

CHAN 2 24 ST* HR* LR* HA* LA* PV* AR* 

CHAN 3 32 ST* HR* LR* HA* LA* PV* AR* 
=::~:~ 

::-:;~ 
--~~:~ 

CHAN 4 40 ST* HR* LR* HA* LA* PV* AR* 

':1 
>j 

CHAN .5 48 ST* HR* LR* HA* LA* PV* AR* 

.· J 
. :·. 

_J CHAN 6 56 ST* HR* LR* HA* LA* PV* AR* 

... ,.,l 
.·:\ 

·::: CHAN 7 64 .J 
'· ST* HR* LR* HA* LA* PV* AR* 

. ": .~», 
I 
I 

J CHAN 8 72 ·ST* HR* LR* HA* LA* PV* AR* . 

] CHAN 1-2 80 Tl T2 T3 T4 'l' l T2 T3 T4 
,.J - · _:; 

I 
·:~ 
:[ 

j 

CHAN 3-4 88 Tl T2 T3 T4 Tl T2 T3 T4 

... t 

:Siij 

CHAN 5-6 9 6 Tl T2 T3 T4 Tl T2 T3 T4 

CHAN 7-8 104 Tl T2 T3 T4 Tl T2 T3 T4 

List of 6433 Parameter Numbers, [PNO]s, 

and their respective mnemonics for 

pseudo-Analogue Input Boards 

TABLE 1 



0 

0 II 

A4 
8 AB 

CHAN l 16 ST* 

CHAN 2 24 ST* 

CHAN 3 32 ST* 

CHAN 4 40 ST* 

~ . . 
C:HAN 5 48 ST* 

CHAN 6 56 ST* 

CHAN 7 64 ST* 

CHAN 8 72 ST* 
,______,... 

CHAN 1-2 80 Tl 

CHAN 3-4 88 Tl 

CHAN 5-6 96 Tl 

CHAN 7-8 104 Tl 

l 2 3 4 5 6 7 

Sl Al S2 A2 S3 A3 54 
SS AS S6 AG 57 A7 S8 

SW MD 

HR* LR* OP* HO* LO* 

HR* LR* OP* HO* LO* 

HR* LR* OP* HO* LO* 

HR* LR* OP* HO* LO* 

_._ .... . !' 

HR* LR* OP* HO* LO* 

HR* LR* OP* HO* LO* 

HR~ LR* OP* HO* LO* 

HR* LR* OP* HO* LO* 

-
I 

T2 T3 T4 Tl T2 T3 '1'4 

··= 
T2 T3 T4 Tl 'J!i T3 T4 

T2 T3 '£4 Tl T2 T3 T4 

T2 T3 T4 Tl T2 T3 T4 

List of 6433 Parameter Numbers, (PNO]s, 

and their respective mnemonics for real 

and pseudo-Analogue Output Boards 

TA BLE 2 

( 4) 

( 4) 

I 
~llm 
~ 

'·' .. ·.·1.· •.. 

l .;::,,., 

··.··.:·.1_· 

1 

·.·-.·J· ' ' 

~ . . ."· 

.. ~:: . . 

.J 

l 

] 



0 l 2 3 4 5 6 7 

Sl Al S2 A2 S3 A3 S4 
0 II SS AS S6 A6 57 A7 SB ( 4) 

A4 
8 AS SW MD ( 4) 

CHAN 1-8 16 ST* AM* DS* 

24 

32 

40 

48 
i 

I 
] 

56 

' 64 

. 72 

. . -
' 

CHAN 1-2 80 Tl T2 T3 T4 Tl T2 T3 T4 

- ; 

CHAN 3-4 88 Tl T2 T3 T4 . Tl T2 T3 T4 

CHAN 5-6 96 Tl T2 T3 T4 Tl T2 T3 T4 

CHAN 7-8 104 Tl T2 T3 T4 Tl T2 T3 T4 

List of 6433 Parameter Numbers, [PNO]s, 

and their respective mnemonics for real 

and pseudo-Digital Input Boards 

TABLE 3 



0 l 

Sl 
0 II SS 

A4 
8 AB SW 

CHAN 1-8 16 ST* AM* 

24 

32 

40 

48 

56 

64 ' 

72 

CHAN 1-2 80 Tl T~ 

CHAN 3-4 88 Tl T~ 

CHAN 5-6 96 Tl T2 

CHAN 7-B 104 Tl T2 

2 3 4 5 6 7 

Al S2 A2 SJ A3 S4 
AS S6 A6 57 A7 SS { 4) 

MD - ( 4) 

OS* 

_ ....... ... _ .. -.: · 

T3 T4 Tl '1'2 T3 T4 

··: 
•r3 T4 Tl T2 · T3 T4 

T3 T4 Tl T2 T3 T4 

T3 T4 T l T2 T3 T4 

List of 6433 Parameter Numbers, [PNO]s, 

and their respective mnemonics for real 

and pseudo-Digital Output Boards 

TABLE 4 

I 
I 

. · ::~ 

·• :l 

.J 

· .. .,.J 



' ' ,~ 
""..- ......: ~ ....:.. --~""" '---..:- .... ..;> 

Block 

Description 

General 
Purpose 

Analogue 
Input 

AnalogueOIP 
Digital Input 
Digital O/P 

Set point 

Ratio 

PIO Control 

Manual 
Output 
Station 
Display & 
Control 
Alarm 
Block 
Constants 
Block 
Filter 
Block 
Delay 
Block 
Totolisation 
Block 

Block 

t ' .: 
"'~-

Block 

Mn'nic No. 

GP 0 
1 

Al 2 
3 

AO 4 

DI 5 
DO 6 

SP 7 
8 

RB 9 
10 

3T 11 
12 

13 
MS 

14 

DC 15 

16 

AB 17 
18 

CB 
19 
20 
21 

FB 22 

DB 23 
24 
25 TB 
26 

~ tqili;~ c~;j 

Block Renv 

Type Block 

0 1 
1 

1 2 
3 

2 1 
3 1 
4 1 

5 1 
2 

6 
1 
2 

7 
1 
2 
1 

8 
2 

9 
1 

2 

A 1 

2 
1 

B 
2 

1 c 
2 

D 
1 
z 
1 

E 
2 

f •" . 

'...:'..iji,,;..~ • L.- --~-=.-:·: 
i" ~---r:· ~ 
~~,..;.;:1 ~-... ·.·.•::..:; 

Parameter Number 

0 1 z 3 4 5 6 

ST 11 L1 L2 BG SW PB 
ST HR LR Al AV 
ST HR LR AI AV 
ST HR LR Al AV 
ST HR LR HL LL AO 
ST XM OS 
ST WM OS 
ST HR LR HL LL PV SP 
ST HR LR HL LL PV SP 
ST HR LR RS RT RB 
ST HR LR RS RT RB 
ST XP TI TD FF FB OP 
ST XP TI TO FF FB OP 
ST HV LV HL LL AO OP 
ST HV LV HL LL AO o·p 
ST 1B 28 36 OD ES SM 
ST 18 28 38 DD ES SM 
ST HV LV HL LL PV SP 
ST HV LV HL LL PV SP 
ST 1K ZK 3K 4K us 
ST 1K ZK 3K 4K us 
ST XK lT 2T FF Fl OP 
ST XK 1T ZT FF Fl OP 
ST OT 
ST OT 
ST FS FT 
ST FS FT 

.. ' 
~. :;,...;<w•>..:'f 

7 

ER 
ER 

TS 
TS 
OT 
OT 

AH 
AH 

L~} . ~;ii-J ~~~i;~ 

8 9 A B c 

SL SR SB RL HA 
SL SR SB RL HA 

lli~i~~ filillfilill.ll.il ~t:lWiillJ lliUlliti~* UiiliUi~ auiElliillfil 

D £ F 
..., > c:: "' :I "O 
n t'1 ,... z 
~ 0 
0 H 
:I x 
o:i w 
...... 
0 
n 
?(" 
r.n 

°' w 
°' °' 

LA HD LO 
LA HO LO 

I 




